\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{G-spectrum} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{models}{Models}\dotfill \pageref*{models} \linebreak \noindent\hyperlink{IndexedOnAllRepresentations}{Indexed on all representations}\dotfill \pageref*{IndexedOnAllRepresentations} \linebreak \noindent\hyperlink{via_orthogonal_spectra_with_action}{Via orthogonal spectra with $G$-action}\dotfill \pageref*{via_orthogonal_spectra_with_action} \linebreak \noindent\hyperlink{RelationToMackeyFunctors}{Via Mackey functors}\dotfill \pageref*{RelationToMackeyFunctors} \linebreak \noindent\hyperlink{via_excisive_functors}{Via excisive functors}\dotfill \pageref*{via_excisive_functors} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_spectra_with_action}{Relation to spectra with $G$-action}\dotfill \pageref*{relation_to_spectra_with_action} \linebreak \noindent\hyperlink{relation_to_borelequivariant_spectra}{Relation to Borel-equivariant spectra}\dotfill \pageref*{relation_to_borelequivariant_spectra} \linebreak \noindent\hyperlink{EquivariantWhitehead}{Equivariant stable Whitehead theorem}\dotfill \pageref*{EquivariantWhitehead} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $G$ a [[compact Lie group]] (or more generally a [[compact topological group]]) the concept of \emph{$G$-spectrum} (or \emph{$G$-equivariant spectrum}) is the generalization of that of [[spectrum]] as one passes from [[stable homotopy theory]] to [[equivariant stable homotopy theory]], or more generally, as $G$ is allow to vary, to [[global equivariant stable homotopy theory]]. Where the ordinary concept of [[spectrum]] is given in terms of [[looping and delooping]] of ordinary [[topological spaces]] by ordinary [[spheres]], a $G$-spectrum is instead given by looping and delooping of [[topological G-spaces]] with respect to [[representation spheres]] of $G$, namely [[one-point compactifications]] of linear $G$-[[representations]], for all representations appearing in a chosen ``[[G-universe]]''. Such a [[G-universe]] is called \emph{complete} if it contains every [[irreducible representation]] of $G$, and the spectra modeled on such a complete $G$-universe are the \emph{genuine $G$-spectra}. At the other extreme, if the [[G-universe]] contains only the trivial representations, then the resulting spectra are the \emph{[[spectra with G-action]]}, also called \emph{[[naive G-spectra]]} for emphasis of the distinction to the previous case. The genuine $G$-spectra are richer than \emph{[[spectra with G-action]]} and have better homotopy-theoretic properties. In particular the genuine [[equivariant cohomology]] theories which they [[Brown representability theorem|represent]] have [[suspension isomorphisms]] for suspension by all [[representation spheres]] and with respect to [[RO(G)-grading]]. When $G$ is the trivial group, a $G$-spectrum is also known as a [[coordinate-free spectrum]]. \hypertarget{models}{}\subsection*{{Models}}\label{models} There are various equivalent ways to present genuine $G$-spectra. \hypertarget{IndexedOnAllRepresentations}{}\subsubsection*{{Indexed on all representations}}\label{IndexedOnAllRepresentations} (\hyperlink{May96}{May 96, chapter XII}, \hyperlink{GreenleesMay}{Greenlees-May, section 2}) Fix a [[G-universe]]. For $V$ any [[orthogonal group|orthogonal]] [[representation]] in the universe, write $S^V$ for its [[representation sphere]]. For $V \hookrightarrow W$ a subrepresentation, write $W-V$ for the [[orthogonal complement]] representation. A \emph{$G$-prespectrum} $E$ is an assignment of a [[pointed topological space|pointed]] [[G-space]] $E_V$ to each $G$-[[representation]] $V$ (in the given [[G-universe]]), equipped for each subrepresentation $V \hookrightarrow W$ with a pointed $G$-equivariant [[continuous function]] \begin{displaymath} \sigma_{V,W} \;\colon\; S^{W-V} \wedge E_V \longrightarrow E_W \end{displaymath} such that \begin{enumerate}% \item $\Sigma_{V,V} = id$; \item for any $Z \hookrightarrow V \hookrightarrow W$ we have [[commuting diagrams]] \begin{displaymath} \itexarray{ S^{Z-W}\wedge S^{V-W} \wedge E_V &\stackrel{S^{Z-W}\wedge(\sigma_{V,W})}{\longrightarrow}& S^{Z-W}E_W \\ \downarrow && \downarrow^{\mathrlap{\Sigma_{Z,W}}} \\ S^{Z-V}E_V &\stackrel{\sigma_{V,Z}}{\longrightarrow}& E_Z } \end{displaymath} \end{enumerate} Write \begin{displaymath} \tilde \sigma_{V,W} \;\colon\; E_V \longrightarrow \Omega^{W-V}E_W \end{displaymath} for the [[adjuncts]] of these structure maps. A $G$-prespectrum is called (at least in (\hyperlink{May96}{May 96, chapter XII})) \begin{itemize}% \item a \emph{$G$-$\Omega$-spectrum} if all the $\sigma_{V,W}$ are [[weak homotopy equivalences]]; \item a \emph{$G$-spectrum} if all the $\sigma_{V,W}$ are [[homeomorphisms]]. \end{itemize} \hypertarget{via_orthogonal_spectra_with_action}{}\subsubsection*{{Via orthogonal spectra with $G$-action}}\label{via_orthogonal_spectra_with_action} While the definition of \hyperlink{IndexedOnAllRepresentations}{spectra indexed on all representations} manifestly relates to the [[suspension isomorphism]] for smashing with [[representation spheres]] and shifting in [[RO(G)-grading]], the information encoded in the objects in this definition has much redundancy. A ``smaller'' definition of genuine $G$-spectra is given by [[orthogonal spectra]] equipped with $G$-action (\hyperlink{Mandellmay04}{Mandell-May 04}, \hyperlink{Schwede15}{Schwede 15}). \hypertarget{RelationToMackeyFunctors}{}\subsubsection*{{Via Mackey functors}}\label{RelationToMackeyFunctors} For $G$ a [[finite group]] then genuine $G$-spectra are equivalent to \emph{[[Mackey functors]]} on the category of [[finite set|finite]] [[G-sets]]. (\hyperlink{GuillouMay11}{Guillou-May 11, theorem 0.1}, \hyperlink{Barwick14}{Barwick 14, below example B.6}). \hypertarget{via_excisive_functors}{}\subsubsection*{{Via excisive functors}}\label{via_excisive_functors} Characterization of $G$-spectra \href{}{via excisive functors} on [[G-spaces]] is in (\hyperlink{Blumberg05}{Blumberg 05}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_spectra_with_action}{}\subsubsection*{{Relation to spectra with $G$-action}}\label{relation_to_spectra_with_action} (e.g. \hyperlink{Carlsson92}{Carlsson 92, p. 14}, \hyperlink{GreenleesMay}{GreenleesMay, p.16}) \hypertarget{relation_to_borelequivariant_spectra}{}\subsubsection*{{Relation to Borel-equivariant spectra}}\label{relation_to_borelequivariant_spectra} In the general context of ([[global equivariant stable homotopy theory|global]]) [[equivariant stable homotopy theory]], [[Borel equivariant cohomology|Borel-equivariant]] spectra are those which are \emph{right induced} from plain [[spectra]], hence which are in the [[essential image]] of the [[right adjoint]] to the [[forgetful functor]] from [[equivariant spectra]] to plain [[spectra]]. (\hyperlink{Schwede18}{Schwede 18, Example 4.5.19}) \hypertarget{EquivariantWhitehead}{}\subsubsection*{{Equivariant stable Whitehead theorem}}\label{EquivariantWhitehead} The equivariant version of the stable [[Whitehead theorem]] holds: a map of $G$-spectra $f \colon E \longrightarrow F$ is a [[weak equivalence]] (e.g. an $RO(G)$-degree-wise [[weak homotopy equivalence]] of [[topological G-spaces]] in the \hyperlink{IndexedOnAllRepresentations}{model via indexing on all representations}) precisely it if induces [[isomorphisms]] $\pi_\bullet(f) \colon \pi_\bullet(E) \longrightarrow \pi_{\bullet}(F)$ on all [[equivariant homotopy group]] [[Mackey functors]]. (\hyperlink{GreenleesMay}{Greenlees-May, theorem 2.3}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[equivariant stable homotopy category]] \item [[RO(G)-grading]] \item [[fixed point spectrum]] \item [[geometric fixed points]] \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[equivariant sphere spectrum]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Good lecture notes are \begin{itemize}% \item [[Andrew Blumberg]], \emph{Equivariant homotopy theory}, 2017 (\href{https://www.ma.utexas.edu/users/a.debray/lecture_notes/m392c_EHT_notes.pdf}{pdf}, \href{https://github.com/adebray/equivariant_homotopy_theory}{GitHub}) \end{itemize} The concept of genuine $G$-spectra is due to \begin{itemize}% \item [[L. Gaunce Lewis, Jr.]], [[Peter May]], M. Steinberger, and J. E. McClure, \emph{Equivariant stable homotopy theory}, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986, With contributions by J. E. McClure. MR 866482 (88e:55002) \end{itemize} and in terms of [[orthogonal spectra]] due to \begin{itemize}% \item [[Michael Mandell]], [[Peter May]], \emph{Equivariant orthogonal spectra and S-modules}. Preprint, April 29, 2000, (\href{http://www.math.uiuc.edu/K-theory/0408/}{KTheory:0408}) \end{itemize} also (developed for the [[Arf-Kervaire invariant problem]]) \begin{itemize}% \item [[Michael Hill]], [[Michael Hopkins]], [[Doug Ravenel]], \emph{The Arf-Kervaire invariant problem in algebraic topology: introduction}, Current developments in mathematics, 2009, Int. Press, Somerville, MA, 2010, pp. 23--57. MR 2757358 \emph{On the non-existence of elements of Kervaire invariant one}, (\href{http://arxiv.org/abs/0908.3724}{arXiv:0908.3724}) \emph{The Arf-Kervaire problem in algebraic topology: sketch of the proof}, Current developments in mathematics, 2010, Int. Press, Somerville, MA, 2011, pp. 1--43 \end{itemize} Surveys and introductions include \begin{itemize}% \item [[Gunnar Carlsson]], \emph{A survey of equivariant stable homotopy theory},Topology, Vol 31, No. 1, pp. 1-27, 1992 (\href{http://www.maths.ed.ac.uk/~aar/papers/carlsson1.pdf}{pdf}) \item [[John Greenlees]], [[Peter May]], section 2 of \emph{[[Equivariant stable homotopy theory]]}, in I.M. James (ed.), \emph{[[Handbook of Algebraic Topology]]} , pp. 279-325. 1995. (\href{http://www.math.uchicago.edu/~may/PAPERS/Newthird.pdf}{pdf}) \end{itemize} Lecture notes include \begin{itemize}% \item [[Peter May]], \emph{Equivariant homotopy and cohomology theory} CBMS Regional Conference Series in Mathematics, vol. 91, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996. (\href{http://www.math.uchicago.edu/~may/BOOKS/alaska.pdf}{pdf}) \item [[Stefan Schwede]], \emph{[[Lectures on Equivariant Stable Homotopy Theory]]} \end{itemize} See also \begin{itemize}% \item [[Stefan Schwede]], \emph{[[Global homotopy theory]]} 2018 (\href{https://arxiv.org/abs/1802.09382}{arXiv:1802.09382}) \end{itemize} Relation to [[Mackey functors]]: \begin{itemize}% \item [[Bert Guillou]], [[Peter May]], \emph{Models of $G$-spectra as presheaves of spectra, (\href{http://arxiv.org/abs/1110.3571}{arXiv:1110.3571})} \emph{Permutative $G$-categories in equivariant infinite loop space theory (\href{http://arxiv.org/abs/1207.3459}{arXiv:1207.3459})} \item [[Denis Nardin]], section 2.6 of \emph{Stability and distributivity over orbital ∞-categories}, 2012 (\href{https://www.math.univ-paris13.fr/~nardin/thesis.pdf}{pdf}) \item [[Clark Barwick]], \emph{Spectral Mackey functors and equivariant algebraic K-theory (I)}, Adv. Math., 304:646–727 (\href{http://arxiv.org/abs/1404.0108}{arXiv:1404.0108}) \end{itemize} For more references see at \emph{[[equivariant stable homotopy theory]]} and at \emph{[[Mackey functor]]} Characterization via [[excisive functors]] is in \begin{itemize}% \item [[Andrew Blumberg]], \emph{Continuous functors as a model for the equivariant stable homotopy category} (\href{http://arxiv.org/abs/math.AT/0505512}{arXiv:math.AT/0505512}) \end{itemize} In the case of a [[cyclic group]] of prime order, genuine $G$-spectra admit a simple model which amounts to specifying a spectrum $E$, a $G$-action on $E$, a genuine fixed point spectrum $E^G$, and a diagram $E_{hG} \to E^G \to E^{hG}$. See Example 3.29 in: \begin{itemize}% \item [[Saul Glasman]], \emph{Stratified categories, geometric fixed points and a generalized Arone-Ching theorem}, \href{https://arxiv.org/abs/1507.01976}{arXiv:1507.01976}. \end{itemize} A perspective on the category of genuine G-spectra as a lax limit over those of ``naive'' G-spectra is given in \begin{itemize}% \item [[David Ayala]], [[Aaron Mazel-Gee]], [[Nick Rozenblyum]], \emph{A naive approach to genuine $G$-spectra and cyclotomic spectra} (\href{https://arxiv.org/abs/1710.06416}{arXiv:1710.06416}) \end{itemize} [[!redirects G-spectra]] [[!redirects genuine G-spectrum]] [[!redirects genuine G-spectra]] [[!redirects G-equivariant spectrum]] [[!redirects G-equivariant spectra]] [[!redirects equivariant spectrum]] [[!redirects equivariant spectra]] [[!redirects genuine equivariant spectrum]] [[!redirects genuine equivariant spectra]] \end{document}