\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Gabriel-Ulmer duality} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{gabrielulmer_duality}{}\section*{{Gabriel--Ulmer duality}}\label{gabrielulmer_duality} \noindent\hyperlink{the_idea}{The idea}\dotfill \pageref*{the_idea} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{the_idea}{}\subsection*{{The idea}}\label{the_idea} \textbf{Gabriel--Ulmer duality} says that there is an [[equivalence of categories|equivalence]] of [[2-categories]] (or in other words, a [[biequivalence]]) \begin{displaymath} \begin{matrix} Lex^{op} & \to & LFP \\ C & \mapsto & Lex(C, Set) \end{matrix} \end{displaymath} where [[Lex]] is the 2-category of: \begin{itemize}% \item small [[finitely complete categories]], \item [[finite limit]]$\:$ [[preserved limit|preserving]] [[functors]], and \item [[natural transformations]], \end{itemize} and LFP is the 2-category of \begin{itemize}% \item [[locally finitely presentable categories]], \item finitary [[right adjoint|right]] [[adjoint functors]] and \item [[natural transformations]]. \end{itemize} The idea is that an object $C \in Lex$ can be thought of as an [[essentially algebraic theory]], which has a category of [[model|models]] $Lex(C,Set)$. Gabriel--Ulmer duality says that this category of models is locally finitely presentable, all LFP categories arise in this way, and we can recover the theory $C$ from its category of models. There are similar dualities for other classes of theory such as [[regular theories]]. A version of Gabriel--Ulmer duality for [[enriched category theory]] was proved by [[Max Kelly]] (see \hyperlink{LackTendas}{LackTendas}). Let $\mathcal{V}$ be a symmetric monoidal closed complete and cocomplete category which is locally finitely presentable as a closed category. Then let $\mathcal{V}$-$Lex$ be the 2-category of finitely complete $\mathcal{V}$-categories ($\mathcal{V}$-categories with finite weighted limits), finite limit preserving $\mathcal{V}$-functors, and $\mathcal{V}$-natural transformations, and $\mathcal{V}$-$LFP$ the 2-category of locally finitely presentable $\mathcal{V}$-categories, right adjoint $\mathcal{V}$-functors that preserve filtered colimits, and $\mathcal{V}$-natural transformations. Then there is a biequivalence \begin{displaymath} \begin{matrix} \mathcal{V}-Lex^{op} & \to & \mathcal{V}-LFP \\ C & \mapsto & Lex(C, \mathcal{V}). \end{matrix} \end{displaymath} For instance, in the [[truth value]]-enriched case, the duality is between [[meet semilattices]] and [[algebraic lattices]]. \hypertarget{references}{}\subsection*{{References}}\label{references} The original source is: \begin{itemize}% \item [[Peter Gabriel]], [[Friedrich Ulmer]], \emph{Lokal Praesentierbare Kategorien}, Springer Lecture Notes in Mathematics \textbf{221}, Berlin, 1971. \end{itemize} A careful discussion and proof of the biequivalence is in \begin{itemize}% \item [[Jiri Adamek]], Hans-Eberhard Porst, \emph{Algebraic Theories of Quasivarieties} , J. Algebra \textbf{208} (1998) pp.379-398. \end{itemize} Some other general treatments of Gabriel-Ulmer duality (and generalizations to other [[doctrine|doctrines]]): \begin{itemize}% \item C. Centazzo, [[E. M. Vitale]], \emph{A duality relative to a limit doctrine}, Theory and Appl. of Categories \textbf{10}, No. 20, 2002, 486--497, \href{http://www.tac.mta.ca/tac/volumes/10/20/10-20.pdf}{pdf} \item [[Stephen Lack]], [[John Power]], \emph{Gabriel--Ulmer duality and Lawvere Theories enriched over a general base}, \href{http://maths.mq.edu.au/~slack/papers/jfp.pdf}{pdf} \item [[M. Makkai]], [[A. Pitts]], \emph{Some results on locally finitely presentable categories}, Trans. Amer. Math. Soc. \textbf{299} (1987), 473-496, \href{http://www.ams.org/mathscinet-getitem?mr=869216}{MR88a:03162}, \href{http://dx.doi.org/10.2307/2000508}{doi}, \href{http://www.ams.org/journals/tran/1987-299-02/S0002-9947-1987-0869216-2/S0002-9947-1987-0869216-2.pdf}{pdf} \end{itemize} For a 2-dimensional analogue see the slides from a 2010 talk by Makkai: \href{http://www.math.mcgill.ca/makkai/scans/2010Washington0001.pdf}{pdf} A formal-categorical account using [[Yoneda structure|Yoneda structures]] can be found in \begin{itemize}% \item Ivan Di Liberti, [[Fosco Loregian]], \emph{Accessibility and Presentability in 2-Categories} , arXiv:1804.08710 (2018). (\href{https://arxiv.org/abs/1804.08710}{abstract}) \end{itemize} For a discussion of Gabriel--Ulmer duality and related dualities in the context of [[enriched category theory]] see \begin{itemize}% \item [[Stephen Lack]], Giacomo Tendas, \emph{Enriched Regular Theories}, (\href{https://arxiv.org/abs/1907.02301}{arXiv:1907.02301}) \end{itemize} This discusses (see Theorem 2.1) Kelly's original result for $V$-[[enriched categories]], where $V$ is a closed symmetric monoidal category whose underlying category $V_0$ is locally small, complete and cocomplete, in section 9 (cf. theorem 9.8) of \begin{itemize}% \item [[Max Kelly]], \emph{Structures defined by finite limits in the enriched context}, Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle cat\'e{}goriques, \textbf{23} no. 1 (1982), pp. 3-42, \href{http://www.ams.org/mathscinet-getitem?mr=648793}{MR648793},\href{http://www.numdam.org/item?id=CTGDC_1982__23_1_3_0}{numdam} \end{itemize} For a connection to [[Tannaka duality]] theory see \begin{itemize}% \item nCaf\'e{} discussion \href{http://golem.ph.utexas.edu/category/2011/07/doctrinal_and_tannakian_recons.html}{here} \item [[Brian Day]], \emph{Enriched Tannaka duality}, JPAA \textbf{108} (1996) pp.17-22, \href{http://www.ams.org/mathscinet-getitem?mr=1382240}{MR97d:18008} \end{itemize} For a discussion of an $\infty$-version of Gabriel-Ulmer duality between finitely complete and idempotent complete $(\infty, 1)$-categories and locally finitely presentable $(\infty, 1)$-categories see this \href{https://mathoverflow.net/q/293031/447}{MO discussion}. [[!redirects Gabriel-Ulmer duality]] [[!redirects Gabriel–Ulmer duality]] [[!redirects Gabriel--Ulmer duality]] \end{document}