\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Galois connection} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{galois_connections}{}\section*{{Galois connections}}\label{galois_connections} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{GaloisTheory}{Galois theory}\dotfill \pageref*{GaloisTheory} \linebreak \noindent\hyperlink{InducedFromARelation}{Galois connections induced from a relation}\dotfill \pageref*{InducedFromARelation} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{BetweenPowerSets}{Galois connections between power sets}\dotfill \pageref*{BetweenPowerSets} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} In [[order theory]] the term \emph{Galois connection} (due to \hyperlink{Ore44}{Ore 44}, who spelled it ``connexion'') can mean both: ``[[adjunction]] between [[posets]]'' and ``[[dual adjunction]] between [[posets]]''; the former notion is sometimes called ``monotone Galois connection'' and the latter ``antitone Galois connection''. In this article the term ``Galois connection'' shall mean ``[[dual adjunction]] between [[posets]]''. The term \emph{Galois correspondence} is also in use. For some authors it is synonymous to ``Galois connection'', others reserve it for its restriction to its [[fixed point of an adjunction|fixed points]], where it becomes an [[adjoint equivalence]]. The example that gives the concept its name is the relation between [[subgroups]] and [[subfields]] in [[Galois theory]] (see \hyperlink{GaloisTheory}{below}), but adjunctions between posets, hence Galois connections, appear also in many other and entirely different contexts, see further \hyperlink{Examples}{below}. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} Given [[posets]] $A$ and $B$, a \textbf{Galois connection} between $A$ and $B$ is a pair of order-reversing [[functions]] $f \colon A\to B$ and $g \colon B\to A$ such that $a\le g(f(a))$ and $b\le f(g(b))$ for all $a\in A$, $b\in B$. A \textbf{Galois correspondence} is a Galois connection which is an [[adjoint equivalence]] (so $a = g(f(a))$ and $b = f(g(b))$ for all $a \in A$, $b \in B$). \begin{prop} \label{}\hypertarget{}{} Any Galois connection $f: A \to B$, $g: B \to A$ induces a Galois correspondence between $f(A)$ and $g(B)$, given by the composites $g(B) \hookrightarrow A \stackrel{f}{\to} f(A)$ and $f(A) \hookrightarrow B \stackrel{g}{\to} g(B)$. \end{prop} \begin{proof} For any $a \in A$ of the form $a = g(b)$, we have $a \leq (g \circ f)(a)$ and also $(g \circ f)(a) = g(f(g(b))) \leq g(b) = a$ where the inequality follows from $b \leq f(g(b))$ and antitonicity of $g$. Hence $(g \circ f)(a) = a$ for all $a \in g(B)$. Similarly $(f \circ g)(b) = b$ for all $b \in f(A)$. \end{proof} \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \hypertarget{GaloisTheory}{}\subsubsection*{{Galois theory}}\label{GaloisTheory} The [[Galois theory]] normally taught in graduate-level algebra courses (and based on the work of [[Évariste Galois]]) involves a Galois connection between the intermediate [[fields]] of a [[Galois extension]] and the subgroups of the corresponding [[Galois group]]. \hypertarget{InducedFromARelation}{}\subsubsection*{{Galois connections induced from a relation}}\label{InducedFromARelation} Frequently Galois connections between collections of [[subsets]] ([[power sets]]) arise where $f(a)$ is ``the set of all $y$ standing in some relation to every $x\in a$'' and dually $g(b)$ is ``the set of all $x$ standing in some relation to every $y\in b$.'' Examples of this class of Galois connections include the following \begin{itemize}% \item \textbf{(Zariski topology)} The [[closed subsets]] in the [[Zariski topology]] on [[affine space]] $k^n$ or on the set of [[maximal ideals]] of a [[polynomial ring]], which may be understood as the [[fixed point of an adjunction|fixed points]] of a Galois connection between [[polynomials]] and [[affine space]]/[[maximal ideal]]. This is discussed at \emph{\href{Zariski+topology#InTermsOfGaloisConnections}{Zariski topology -- In terms of Galois connections}}. \item \textbf{(orthogonality classes)} Given a [[category]] $\mathcal{C}$, then on the [[poset]] of sub-[[classes]] of [[morphisms]] the operations of forming left and right classes with [[orthogonality]] [[lifting property]] constitute a Galois connection. \end{itemize} In fact all Galois connections between [[power sets]] arise this way, see \hyperlink{BetweenPowerSets}{below}. We now spell out in detail the Galois connections induced from a relation: \begin{defn} \label{GaloisConnectionFromRelation}\hypertarget{GaloisConnectionFromRelation}{} \textbf{(Galois connection induced from a [[relation]])} Consider two [[sets]] $X,Y \in Set$ and a [[relation]] \begin{displaymath} E \hookrightarrow X \times Y \,. \end{displaymath} Define two [[functions]] between their [[power sets]] $P(X), P(Y)$, as follows. (In the following we write $E(x, y)$ to abbreviate the formula $(x, y) \in E$.) \begin{enumerate}% \item Define \begin{displaymath} V_E \;\colon\; P(X) \longrightarrow P(Y) \end{displaymath} by \begin{displaymath} V_E(S) \coloneqq \left\{ y \in Y \vert \underset{x \in X}{\forall} \left( \left(x \in S\right) \Rightarrow E(x, y) \right) \right\} \end{displaymath} \item Define \begin{displaymath} I_E \;\colon\; P(Y) \longrightarrow P(X) \end{displaymath} by \begin{displaymath} I_E(T) \coloneqq \left\{x \in X \vert \underset{y \in Y}{\forall} \left( \left(y \in T \right) \Rightarrow E(x, y) \right)\right\} \end{displaymath} \end{enumerate} \end{defn} \begin{prop} \label{GaloisConnectionAsAdjunction}\hypertarget{GaloisConnectionAsAdjunction}{} The construction in def. \ref{GaloisConnectionFromRelation} has the following properties: \begin{enumerate}% \item $V_E$ and $I_E$ are [[contravariant functor|contravariant]] order-preserving in that \begin{enumerate}% \item if $S \subset S'$, then $V_E(S') \subset V_E(S)$; \item if $T \subset T'$, then $I_E(T') \subset I_E(T)$ \end{enumerate} \item The \emph{[[adjunction]] law} holds: $\left( T \subset V_E(S) \right) \,\Rightarrow\, \left( S \subset I_E(T) \right)$ which we denote by writing \begin{displaymath} P(X) \underoverset{\underset{V_E}{\longrightarrow}}{\overset{I_E}{\longleftarrow}}{\bot} P(Y)^{op} \end{displaymath} \item both $V_E$ as well as $I_E$ take [[unions]] to [[intersections]]. \end{enumerate} \end{prop} \begin{proof} Regarding the first point: the larger $S$ is, the more conditions that are placed on $y$ in order to belong to $V_E(S)$, and so the smaller $V_E(S)$ will be. Regarding the second point: This is because both these conditions are equivalent to the condition $S \times T \subset E$. Regarding the third point: Observe that in a poset such as $P(Y)$, we have that $A = B$ iff for all $C$, $C \leq A$ iff $C \leq B$ (this is the [[Yoneda lemma]] applied to posets). It follows that \begin{displaymath} \itexarray{ T \subset V_E(\bigcup_{i \in I} S_i) & \text{iff} & \bigcup_{i: I} S_i \subset I_E(T) \\ & \text{iff} & \forall_{i: I} S_i \subset I_E(T) \\ & \text{iff} & \forall_{i: I} T \subset V_E(S_i) \\ & \text{iff} & T \subset \bigcap_{i: I} V_E(S_i) } \end{displaymath} and we conclude $V_E(\bigcup_{i: I} S_i) = \bigcap_{i: I} V_E(S_i)$ by the [[Yoneda lemma]]. \end{proof} \begin{prop} \label{GaloisClosureOperator}\hypertarget{GaloisClosureOperator}{} \textbf{([[closure operators]] from Galois connection)} Given a Galois connection as in def. \ref{GaloisConnectionFromRelation}, consider the [[composition|composites]] \begin{displaymath} I_E \circ V_E \;\colon\; P(X) \longrightarrow P(X) \end{displaymath} and \begin{displaymath} V_E \circ I_E \;\colon\; P(Y) \longrightarrow P(Y) \,. \end{displaymath} These satisfy: \begin{enumerate}% \item For all $S \in P(X)$ then $S \subset I_E \circ V_E(S)$. \item For all $S \in P(X)$ then $V_E \circ I_E \circ V_E (S) = V_E(S)$. \item $I_E \circ V_E$ is [[idempotent]] and [[covariant functor|covariant]]. \end{enumerate} and \begin{enumerate}% \item For all $T \in P(Y)$ then $T \subset V_E \circ I_E(T)$. \item For all $T \in P(Y)$ then $I_E \circ V_E \circ I_E (T) = I_E(T)$. \item $V_E \circ I_E$ is [[idempotent]] and [[covariant functor|covariant]]. \end{enumerate} This is summarized by saying that $I_E \circ V_E$ and $V_E \circ I_E$ are \emph{[[closure operators]]} ([[idempotent monads]]). \end{prop} \begin{proof} The first statement is immediate from the adjunction law (prop. \ref{GaloisConnectionAsAdjunction}). Regarding the second statement: This holds because applied to sets $S$ of the form $I_E(T)$, we see $I_E(T) \subset I_E \circ V_E \circ I_E(T)$. But applying the contravariant map $I_E$ to the inclusion $T \subset V_E \circ I_E(T)$, we also have $I_E \circ V_E \circ I_E(T) \subset I_E(T)$. This directly implies that the function $I_E \circ V_E$. is idempotent, hence the third statement. The argument for $V_E \circ I_E$ is directly analogous. \end{proof} In view of prop. \ref{GaloisClosureOperator} we say that: \begin{defn} \label{GaloisClosedElements}\hypertarget{GaloisClosedElements}{} \textbf{(closed elements)} Given a Galois connection induced from a relation as in def. \ref{GaloisConnectionFromRelation}, then \begin{enumerate}% \item $S \in P(X)$ is called \emph{closed} if $I_E \circ V_E(S) = S$; \item the \emph{closure} of $S \in P(X)$ is $Cl(S) \coloneqq I_E \circ V_E(S)$ \end{enumerate} and similarly \begin{enumerate}% \item $T \in P(Y)$ is called \emph{closed} if $V_E \circ I_E(T) = T$; \item the \emph{closure} of $T \in P(Y)$ is $Cl(T) \coloneqq V_E \circ I_E(T)$. \end{enumerate} \end{defn} It follows from the properties of [[closure operators]], hence form prop. \ref{GaloisClosureOperator}: \begin{prop} \label{GaloisFixedPoints}\hypertarget{GaloisFixedPoints}{} \textbf{([[fixed point of an adjunction|fixed points]] of a [[Galois connection]])} Given a Galois connection induced from a relation as in def. \ref{GaloisConnectionFromRelation}, then \begin{enumerate}% \item the closed elements of $P(X)$ are precisely those in the [[image]] $im(I_E)$ of $I_E$; \item the closed elements of $P(Y)$ are precisely those in the [[image]] $im(V_E)$ of $V_E$. \end{enumerate} We says these are the \emph{[[fixed point of an adjunction|fixed points]]} of the Galois connection. Therefore the restriction of the Galois connection \begin{displaymath} P(X) \underoverset{\underset{V_E}{\longrightarrow}}{\overset{I_E}{\longleftarrow}}{\bot} P(Y)^{op} \end{displaymath} to these fixed points yields an [[equivalence of categories|equivalence]] \begin{displaymath} im(I_E) \underoverset{\underset{V_E}{\longrightarrow}}{\overset{I_E}{\longleftarrow}}{\simeq} im(V_E)^{op} \end{displaymath} now called a \emph{[[Galois correspondence]]}. \end{prop} \begin{prop} \label{}\hypertarget{}{} Given a Galois connection induced from a relation as in def. \ref{GaloisConnectionFromRelation}, then the sets of closed elements according to def. \ref{GaloisClosedElements} are closed under forming [[intersections]]. \end{prop} \begin{proof} If $\{T_i \in P(Y)\}_{i: I}$ is a collection of elements closed under the operator $K = V_E \circ I_E$, then by the first item in prop. \ref{GaloisClosureOperator} it is automatic that $\bigcap_{i: I} T_i \subset K(\bigcap_{i: I} T_i)$, so it suffices to prove the reverse inclusion. But since $\bigcap_{i: I} T_i \subset T_i$ for all $i$ and $K$ is covariant and $T_i$ is closed, we have $K(\bigcap_{i: I} T_i) \subset K(T_i) \subset T_i$ for all $i$, and $K(\bigcap_{i: I} T_i) \subset \bigcap_{i: I} T_i$ follows. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{BetweenPowerSets}{}\subsubsection*{{Galois connections between power sets}}\label{BetweenPowerSets} \emph{Every} Galois connection between full [[power sets]], \begin{displaymath} (f: P(X) \to P(Y)^{op}) \dashv (g: P(Y)^{op} \to P(X)) \end{displaymath} is of the form in def. \ref{GaloisConnectionFromRelation} \hyperlink{InducedFromARelation}{above}: there is some [[binary relation]] $r$ from $X$ to $Y$ such that \begin{displaymath} f(S) = \{y: \forall_{x \in X} x \in S \Rightarrow r(x, y)\}, \qquad g(T) = \{x: \forall_{y \in Y} y \in T \Rightarrow r(x, y)\} \end{displaymath} Indeed, define $r: X \times Y \to \mathbf{2}$ by stipulating that $r(x, y)$ is true if and only if $y \in f(\{x\})$. Because $f$ is a left adjoint, it takes colimits in $P(X)$ (in this case, unions) to colimits in $P(Y)^{op}$, which are intersections in $P(Y)$. Since every $S$ in $P(X)$ is a union of singletons $\{x\}$, this gives \begin{displaymath} f(S) = \bigcap_{x \in S} f(\{x\}) = \{y: \forall_{x \in S} r(x, y)\} \end{displaymath} which is another way of writing the formula for $f$ given above. We observe that \begin{displaymath} T \subseteq f(S) = \{y: \forall_{x \in S} r(x, y)\} \end{displaymath} if and only if \begin{displaymath} S \times T \subseteq r \end{displaymath} (now viewing $r$ extensionally in terms of subsets). This last symmetrical expression in $S$ and $T$ means \begin{displaymath} S \subseteq g(T) := \{x: \forall_{y \in T} r(x, y)\} \end{displaymath} which means we have a Galois connection between $f$ and $g$ under this definition; since $g$ is uniquely determined by the presence of a Galois connection with $f$, we conclude that all Galois connections between power sets arise in this way, via a relation $r$ between $X$ and $Y$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[modality]] \item [[adjoint modality]] \item [[adjunction]] \item Every Galois connection is an [[idempotent adjunction]]. \item [[nucleus of a profunctor]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The concent is due to \begin{itemize}% \item \O{}ystein Ore, \emph{Galois connexions} , Trans. AMS \textbf{55} (1944) pp.493-513. (\href{http://www.ams.org/journals/tran/1944-055-00/S0002-9947-1944-0010555-7/S0002-9947-1944-0010555-7.pdf}{pdf}) \end{itemize} Introduction is in \begin{itemize}% \item M. Ern\'e{}, E. Klossoswki, A. Melton, G. E. Strecker, \emph{A primer in Galois connections} , Annals New York Academy of Sciences \textbf{704} (1993) pp.103-125. (\href{http://www.math.ksu.edu/~strecker/primer.ps}{draft}) \end{itemize} See also \begin{itemize}% \item Wojciech Dzik, Jouni J\"a{}rvinen, Michiro Kondo, \emph{Characterising intermediate tense logics in terms of Galois connections} (\href{http://arxiv.org/abs/1401.7646}{arXiv:1401.7646}). \end{itemize} [[!redirects Galois connection]] [[!redirects Galois connections]] [[!redirects Galois correspondence]] [[!redirects Galois correspondences]] \end{document}