\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Gelfand duality} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{duality}{}\paragraph*{{Duality}}\label{duality} [[!include duality - contents]] \hypertarget{noncommutative_geometry}{}\paragraph*{{Noncommutative geometry}}\label{noncommutative_geometry} [[!include noncommutative geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{in_constructive_mathematics}{In constructive mathematics}\dotfill \pageref*{in_constructive_mathematics} \linebreak \noindent\hyperlink{by_horizontal_categorification}{By horizontal categorification}\dotfill \pageref*{by_horizontal_categorification} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Gelfand duality} is a [[Isbell duality|duality between spaces and their algebras of functions]] for the case of [[compact space|compact]] [[topological space]]s and [[commutative C-star-algebra|commutative]] [[C-star algebras]]: every (nonunital) $C^\ast$-algebra $A$ is equivalent to the $C^\ast$-algebra of [[continuous functions]] on the [[topological space]] called its \emph{[[Gelfand spectrum]]} $sp(A)$. This theorem is the basis for regarding non-commutative $C^\ast$-algebras as formal duals to spaces in [[noncommutative geometry]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} The statement of Gelfand duality involves the following [[categories]] and [[functors]]. \begin{defn} \label{}\hypertarget{}{} Write \begin{itemize}% \item $C^\ast Alg$ for the category of [[C-star algebras]]; \item $C^\ast Alg_{nu}$ for the category of non-unital $C^\ast$-algebras; \item $C^\ast Alg_{com} \subset C^\ast Alg$ for the [[full subcategory]] of commutative $C^\ast$-algebras; \item $C^\ast Alg_{com,nu} \subset C^\ast Alg_{nu}$ for the full subcategory of commutative non-unital $C^\ast$-algebras. \end{itemize} And \begin{itemize}% \item [[Top]]${}_{Haus}$ for the category of [[Hausdorff topological spaces]] \item $Top_{cpt}$ for the [[full subcategory]] of [[Top]]${}_{Haus}$ of the [[compact topological spaces]]; \item $*/Top_{cpt}$ for the category of [[pointed topological space|pointed topological]] [[compact Hausdorff spaces]], i.e. the [[pointed objects]] in $Top_{cpt}$; \item $Top_{lcpt}$ for the category of Hausdorff and [[locally compact topological spaces]] with morphisms being the [[proper maps]] of topological spaces. \end{itemize} \end{defn} The duality itself is exhibited by the following [[functors]]: \begin{defn} \label{FunctorsOfFunctionAlgebras}\hypertarget{FunctorsOfFunctionAlgebras}{} Write \begin{displaymath} C \;\colon\; Top_{cpt} \to C^\ast Alg_{com}^{op} \end{displaymath} for the functor which sends a [[compact topological space]] $X$ to the algebra of [[continuous function]]s $C(X) = \{f : X \to \mathbb{C} | f \; continuous\}$, equipped with the structure of a $C^\ast$-algebra in the evident way (\ldots{}). Write \begin{displaymath} C_0 \;\colon\; */Top_{cpt} \to C^\ast Alg_{com,nu} \end{displaymath} for the functor that sends a [[pointed topological space|pointed topological]] [[compact Hausdorff space]] $(X,x_0)$ to the algebra of [[continuous function]]s $f : X \to \mathbb{C}$ for which $f(x_0) = 0$. \end{defn} \begin{defn} \label{}\hypertarget{}{} Write \begin{displaymath} sp : C^\ast Alg_{com}^{op} \to Top_{cpt} \end{displaymath} for the [[Gelfand spectrum]] functor: it sends a commutative $C^\ast$-algebra $A$ to the set of \emph{[[character]]s} -- non-vanishing $C^\ast$-algebra [[homomorphisms]] $x : A \to \mathbb{C}$ -- equipped with the [[spectral topology]]. Similarly write \begin{displaymath} sp : C^\ast Alg_{com,nu}^{op} \to Top_{lcpt} \,. \end{displaymath} \end{defn} \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \begin{theorem} \label{GelfandDualityTheorem}\hypertarget{GelfandDualityTheorem}{} \textbf{(Gelfand duality theorem)} The pairs of functors \begin{displaymath} C^\ast Alg_{com}^{op} \stackrel{\overset{C}{\leftarrow}}{\underset{sp}{\to}} Top_{cpt} \end{displaymath} is an [[equivalence of categories]]. \end{theorem} Here $C^\ast Alg^{op}_{\cdots}$ denotes the [[opposite category]] of $C^\ast Alg_{\cdots}$. \begin{cor} \label{}\hypertarget{}{} On non-unital $C^\ast$-algebras the above induces an [[equivalence of categories]] \begin{displaymath} C^\ast Alg_{com,nu}^{op} \stackrel{\overset{C_0}{\leftarrow}}{\underset{sp}{\to}} */Top_{cpt} \,. \end{displaymath} \end{cor} \begin{proof} The operation of [[unitalization]] $(-)^+$ constitutes an [[equivalence of categories]] \begin{displaymath} C^\ast Alg_{nu} \stackrel{\overset{ker}{\leftarrow}}{\underset{(-)^+}{\to}} C^\ast Alg / \mathbb{C} \end{displaymath} between non-unital $C^\ast$-algebras and the [[over-category]] of $C^\ast$-algebras over the [[complex number]]s $\mathbb{C}$. Composed with the equivalence of theorem \ref{GelfandDualityTheorem} this yields \begin{displaymath} C^\ast Alg_{com,nu}^{op} \underoverset{\simeq}{(-)^+}{\to} (C^\ast Alg_{com}/\mathbb{C})^{op} \underoverset{\simeq}{C}{\to} * / Top_{cpt} \,. \end{displaymath} The weak inverse of this is the composite functor \begin{displaymath} C_0 : */Top_{cpt} \underoverset{\simeq}{sp}{\to} (C^\ast Alg_{com}/\mathbb{C})^{op} \underoverset{\simeq}{ker}{\to} C^\ast Alg_{com,nu}^{op} \end{displaymath} which sends $(* \stackrel{x_0}{\to} X)$ to $ker(C(X) \stackrel{ev_{x_0}}{\to} \mathbb{C})$, hence to $\{f \in C(X) | f(x_0) = 0\}$. This is indeed $C_0$ from def. \ref{FunctorsOfFunctionAlgebras}. \end{proof} \begin{remark} \label{ForLocallyCompactTopologicalSpaces}\hypertarget{ForLocallyCompactTopologicalSpaces}{} Since [[locally compact Hausdorff spaces are equivalently open subspaces of compact Hausdorff spaces]], via the construction that sends a locally compact Hausdorff space $X$ to its [[one-point compactification]], and since a [[continuous function]] on the compact Hausdorff space $X^\ast$ which vanishes at the extra point is equivalently a continuous function on $X$ which [[vanishing at infinity|vanishes at infinity]], the above induces an equivalence between locally compact Hausdorff spaces and $C^\ast$-algebras of functions that vanish at infinity. With due care on defining the right morphisms, the duality generalizes also to [[locally compact topological spaces]]. See for instance (\hyperlink{Brandenburg07}{Brandenburg 07}). The duality also works with [[real numbers]] instead of [[complex numbers]] (\hyperlink{Johnstone82}{Johnstone 82, chapter IV}) For an overview of other generalizations see also \href{http://mathoverflow.net/a/82960/381}{this MO discussion}. \end{remark} \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} \hypertarget{in_constructive_mathematics}{}\subsubsection*{{In constructive mathematics}}\label{in_constructive_mathematics} Gelfand duality makes sense in [[constructive mathematics]] hence [[internalization|internal]] to any [[topos]]: see [[constructive Gelfand duality theorem]]. \hypertarget{by_horizontal_categorification}{}\subsubsection*{{By horizontal categorification}}\label{by_horizontal_categorification} Gelfand duality can be extended by [[horizontal categorification]] to define the notion of [[spaceoid|spaceoids]] as formal duals of commutative $C^*$-[[C-star-category|categories]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Isbell duality]] \begin{itemize}% \item [[Gelfand-Kolmogorov theorem]] \item \textbf{Gelfand duality}, [[constructive Gelfand duality theorem|constructive Gelfand duality]] \begin{itemize}% \item [[C-star algebra]], [[topological space]] \item [[Gelfand-Naimark theorem]] \item [[Gelfand spectrum]] \item [[Serre-Swan theorem]] \item [[noncommutative topology]] \end{itemize} \end{itemize} \item [[Stone duality]] \end{itemize} The analogous statement in [[differential geometry]]: \begin{itemize}% \item [[embedding of smooth manifolds into formal duals of R-algebras]] \end{itemize} [[!include Isbell duality - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Formulation of Gelfand duality in terms of [[category theory]] ([[adjoint functors]], [[monads]] (``triples'') and [[adjoint equivalences]]) originates with \begin{itemize}% \item Joan W. Negrepontis, \emph{Duality in analysis from the point of view of triples}, Journal of Algebra, 19 (2): 228–253, (1971) (, ISSN 0021-8693, MR 0280571) \end{itemize} Quick exposition is in \begin{itemize}% \item Ivo Dell'Ambrogio, \emph{Categories of $C^\ast$-algebras} (\href{http://www.math.uni-bielefeld.de/~ambrogio/exercise_C_algebras.pdf}{pdf}) \end{itemize} Textbook accounts include \begin{itemize}% \item [[Peter Johnstone]], section IV.4 of \emph{[[Stone Spaces]]}, Cambridge Studies in Advanced Mathematics 3, Cambridge University Press 1982. xxi+370 pp. MR85f:54002, reprinted 1986. \item [[Nicolaas Landsman|N. P. Landsman]], \emph{Mathematical topics between classical and quantum mechanics}, Springer Monographs in Mathematics 1998. xx+529 pp. \href{http://www.ams.org/mathscinet-getitem?mr=1662141}{MR2000g:81081} \href{http://dx.doi.org/10.1007/978-1-4612-1680-3}{doi} \item Gerald B. Folland, \emph{A course in abstract harmonic analysis}, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995. x+276 pp. \href{http://books.google.com/books?hl=en&lr=&id=0VwYZI1DypUC}{gBooks} \end{itemize} Careful discussion of the duality for the more general case of [[locally compact topological spaces]] includes \begin{itemize}% \item [[Martin Brandenburg]], \emph{Gelfand-Dualit\"a{}t ohne 1}, 2007 (\href{http://www.matheplanet.com/matheplanet/nuke/html/article.php?sid=1111}{web}) \end{itemize} Discussion of Gelfand duality as a [[fixed point equivalence of an adjunction]] between includes \begin{itemize}% \item [[Hans-E. Porst]], [[Walter Tholen]], section 4-c of \emph{Concrete Dualities} in H. Herrlich, [[Hans-E. Porst]] (eds.) \emph{Category Theory at Work}, Heldermann Verlag 1991 (\href{http://www.heldermann.de/R&E/RAE18/ctw07.pdf}{pdf}) \end{itemize} following \begin{itemize}% \item [[Eduardo Dubuc]], [[Horacio Porta]], \emph{Convenient categories of topological algebras}, Bull. Amer. Math. Soc., Volume 77, Number 6 (1971), 975-979 \href{https://projecteuclid.org/euclid.bams/1183533170}{euclid} \end{itemize} Some other generalized contexts for Gelfand duality: \begin{itemize}% \item [[Hans Porst]], Manfred B. Wischnewsky, \emph{Every topological category is convenient for Gelfand duality}, Manuscripta mathematica \textbf{25}:2, (1978) pp 169-204 \item [[Chris Heunen]], [[Klaas Landsman]], [[Bas Spitters]], Sander Wolters, \emph{The Gelfand spectrum of a noncommutative $C^\ast$-algebra}, J. Aust. Math. Soc. \textbf{90} (2011), 39--52 \href{http://dx.doi.org/10.1017/S1446788711001157}{doi} \href{http://www.math.ru.nl/~landsman/LandsmanCarey60.pdf}{pdf} \item [[Christopher J. Mulvey]], \emph{A generalisation of Gelfand duality}, J. Algebra 56, n. 2, (1979) 499--505 \item [[Arthur Parzygnat]], \emph{Discrete probabilistic and algebraic dynamics: a stochastic commutative Gelfand-Naimark Theorem} (\href{https://arxiv.org/abs/1708.00091}{arXiv:1708.00091}) \end{itemize} category: analysis, geometry, noncommutative geometry [[!redirects Gelfand duality]] [[!redirects Gel'fand duality]] [[!redirects Gelfand-Naimark duality]] \end{document}