\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Gelfand triple} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{basic_examples}{Basic examples}\dotfill \pageref*{basic_examples} \linebreak \noindent\hyperlink{a_long_example}{A long example}\dotfill \pageref*{a_long_example} \linebreak \noindent\hyperlink{isomorphisms}{Isomorphisms}\dotfill \pageref*{isomorphisms} \linebreak \noindent\hyperlink{terminology_and_references}{Terminology and references}\dotfill \pageref*{terminology_and_references} \linebreak \noindent\hyperlink{terminological_variants_and_history}{Terminological variants and history}\dotfill \pageref*{terminological_variants_and_history} \linebreak \noindent\hyperlink{early_references}{Early references}\dotfill \pageref*{early_references} \linebreak \noindent\hyperlink{modern_references_and_links}{Modern references and links}\dotfill \pageref*{modern_references_and_links} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Gel'fand triple} is a structure that equips a [[Hilbert space]] with a dense [[topological vector space|topological vector subspace]] of good ``test'' functions, so that the dual of the subspace of test functions enhaces the Hilbert space by embedding it into a larger [[TVS]] whose elements can be considered as generalized [[eigenvector]]s for the continuous [[spectrum of an operator|spectrum]] of [[normal operator|normal]] (possibly [[unbounded operator|unbounded]]) [[linear operator]]s. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{Gel'fand triple} is datum of the form \begin{displaymath} B\stackrel{J}\hookrightarrow H \stackrel{K}\hookrightarrow B^* \end{displaymath} where $H$ is a [[separable Hilbert space]], $B$ is a [[Banach space]] (or more general [[topological vector space]] (TVS)), $B^*$ is a dual TVS of $B$, $J:B\hookrightarrow H$ is an injective [[bounded operator]] with dense image, and $K$ is the composition of the canonical isomorphism $H\cong H^*$ determined by the inner product (i.e. given by Riesz theorem) and of the Banach transpose (dual) $J^*: H^*\to B^*$ of the operator $J$. The fact that $J(B)$ is dense in $H$ implies that $J^*$ (hence also $K$) is injective as well. \hypertarget{basic_examples}{}\subsection*{{Basic examples}}\label{basic_examples} A typical example is $B = \mathcal{S}(\mathbb{R}^n)$ (Schwarz space), $H = L^2(\mathbb{R}^n)$ and $B^* = \mathcal{S}'(\mathbb{R}^n)$ (the space of tempered (Schwarz) distributions). One of the basic facts on Fourier transform is that this Gel'fand triple is preserved by the Fourier transform. Another natural example is $\mathcal{l}^1\hookrightarrow \mathcal{l}^2\hookrightarrow \mathcal{l}^\infty$. \hypertarget{a_long_example}{}\paragraph*{{A long example}}\label{a_long_example} Let $H$ be the Hilbert space $L^2(\mathbb{R}, d x)$ consisting of square integrable functions $f$ with respect to [[Lebesgue measure]]. There is an unbounded self-adjoint operator \begin{displaymath} m_x: H \to H: f \mapsto x \cdot f \end{displaymath} where $(x \cdot f)(y) := y f(y)$. This operator is not defined on all of $H$, but it is defined on a dense subspace of $H$. For example, if $S$ is the Schwartz space consisting of smooth functions $f$ on $\mathbb{R}$ all of whose derivatives $f^{(n)}(x)$ decay rapidly at infinity (more rapidly than any negative power of $|x|$), then there is a dense inclusion map $i: S \to H$, and $m_x$ is defined globally on $S$. Meanwhile the Schwartz space $S$ carries its own topology (as described in the article [[distribution]]), stronger than the topology it inherits from $H$, and the space of tempered distributions $S^*$ is defined to be the continuous dual of the [[topological vector space|TVS]] $S$. Since the continuous inclusion $i: S \to H$ is dense, it follows that any continuous functional \begin{displaymath} f: S \to \mathbb{C} \end{displaymath} has at most one extension to a continuous functional $H \to \mathbb{C}$. In other words, the adjoint map \begin{displaymath} i^*: H^* \to S^* \end{displaymath} is injective. In addition, the topology on $S$ is such that the operator $m_x: S \to S$ is continuous. In this example, there is a dense inclusion $S \to S^*$ defined by the inner product pairing, and the operator $m_x$ extends uniquely to an operator $S^* \to S^*$, called $m_x$ by abuse of notation. Again, in this example, the operator $m_x: S^* \to S^*$ has an eigenvector $s_{\xi}$ for each $\xi \in \mathbb{R}$: \begin{displaymath} m_x(s_{\xi}) = \xi s_{\xi} \end{displaymath} (under construction) \hypertarget{isomorphisms}{}\subsection*{{Isomorphisms}}\label{isomorphisms} An isomorphism of Gelfand triples $(B_1,H_1,B^*_1)\to (B_2,H_2,B^*_2)$ is a unitary isomorphism $H_1\to H_2$ which restricts to an isomorphism of Banach spaces $B_1\to B_2$, and which extends to a weak$*$- and norm-preserving continuous isomorphism $B_1^*\to B_2^*$. \hypertarget{terminology_and_references}{}\subsection*{{Terminology and references}}\label{terminology_and_references} \hypertarget{terminological_variants_and_history}{}\paragraph*{{Terminological variants and history}}\label{terminological_variants_and_history} Usually, $B$ and $B^*$ are Banach spaces, when we say \emph{Banach Gel'fand triple}, there are some other variants involving more general [[topological vector space]]s. In some cases one also uses the terminology \emph{rigged Hilbert space}, following articles by Roberts and others since mid 1960-s. Nuclear Gel'fand triples are very common and then the notion is well behaved. In Russian literature the term \emph{enriched} Hilbert space is used ( ), sometimes translated also as \emph{equipped} Hilbert space. The enriched word here is the same as in the phrase [[enriched category]]. \hypertarget{early_references}{}\paragraph*{{Early references}}\label{early_references} Gel'fand triples were introduced by Gel'fand school about 1955 and quickly incorporated into the theory of generalized functions. \begin{itemize}% \item [[I. M. Gelfand, A. G. Kostyuenko, \emph{Expansion in eigenfunctions of differential and other operators) (Russian), Dokl. Akad. Nauk SSSR (N.S.) \textbf{103} (1955), 349--352, \href{http://www.ams.org/mathscinet-getitem?mr=73136}{MR73136}} \item [[I. M. Gel'fand]], N. Ja. Vilenkin, \emph{Generalized functions}, vol. 4. Some applications of harmonic analysis. Equipped Hilbert spaces, Fizmatgiz, Moscow, 1961 \href{http://www.ams.org/mathscinet-getitem?mr=146653}{MR146653}, English transl. Acad. Press 1964 \href{http://www.ams.org/mathscinet-getitem?mr=173945}{MR173945} \end{itemize} Related early works include \begin{itemize}% \item Ciprian Foia, \emph{D\'e{}compositions int\'e{}grales des familles spectrales et semi-spectrales en op\'e{}rateurs qui sortent de l'espace hilbertien}, Acta Sci. Math. Szeged \textbf{20}, 1959, 117---155. \href{http://www.ams.org/mathscinet-getitem?mr=115092}{MR115092} \end{itemize} John Roberts continued the study in the context of [[quantum mechanics]] (in his thesis work suggested by [[Paul Dirac]]), changing the name to rigged. \begin{itemize}% \item [[John Roberts]], \emph{The Dirac bra and ket formalism}, J. Mathematical Phys. 7 (1966), 1097--1104, \href{http://www.ams.org/mathscinet-getitem?mr=216836}{MR216836}, \emph{Rigged Hilbert spaces in quantum mechanics} , Comm. Math. Physics \textbf{3}, n. 2 (1966), 98--119, \href{http://www.ams.org/mathscinet-getitem?mr=228243}{MR228243}, \href{http://projecteuclid.org/euclid.cmp/1103839388}{euclid} \end{itemize} \hypertarget{modern_references_and_links}{}\paragraph*{{Modern references and links}}\label{modern_references_and_links} \begin{itemize}% \item [[rigged Hilbert space]] \item wikipedia \href{http://en.wikipedia.org/wiki/Rigged_Hilbert_space}{rigged Hilbert space} \item . . , \href{http://dic.academic.ru/dic.nsf/enc_mathematics/3760/%D0%9E%D0%A1%D0%9D%D0%90%D0%A9%D0%95%D0%9D%D0%9D%D0%9E%D0%95}{ }, online article from (Soviet) Matem. enc. \item MathOverflow question: \href{http://mathoverflow.net/questions/43313/good-references-for-rigged-hilbert-spaces}{good-references-for-rigged-hilbert-spaces} \item Feichtinger, \emph{A Banach Gelfand triple framework for regularization and approximation}, \href{http://www.univie.ac.at/nuhag-php/dateien/talks/1086_eucetifeislides.pdf}{slides pdf} \end{itemize} A unification of various inequivalent approaches is claimed in \begin{itemize}% \item M. Gadella, F. G\'o{}mez, \emph{A unified mathematical formalism for the Dirac formulation of quantum mechanics} Foundations of Physics \textbf{32}, No. 6, (2002) \item S. Wickramasekara, A. Bohm, \emph{Symmetry representations in the rigged Hilbert space formulation of quantum mechanics}, \href{http://arxiv.org/abs/math-ph/0302018}{math-ph/0302018} \end{itemize} [[!redirects Gelfand triple]] [[!redirects Gel'fand triple]] [[!redirects enriched Hilbert space]] [[!redirects equipped Hilbert space]] \end{document}