\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Gelfand-Naimark-Segal construction} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{for_algebras}{For $C^\ast$-algebras}\dotfill \pageref*{for_algebras} \linebreak \noindent\hyperlink{ForCStarCategories}{For $C^\ast$-categories}\dotfill \pageref*{ForCStarCategories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Gelfand-Naimark-Segal construction} (``GNS construction'') represents a [[state on a star-algebra]] over the [[complex numbers]], which a priori is defined purely algebraically as a non-degenerate positive linear function \begin{displaymath} \rho \;\colon\; \mathcal{A} \longrightarrow \mathbb{C} \,, \end{displaymath} by a [[vector]] $\psi \in \mathcal{H}$ in a [[complex numbers|complex]] [[Hilbert space]] $\mathcal{H}$ as the ``[[expectation value]]'' \begin{displaymath} \begin{aligned} \rho(A) & = \langle \psi \vert \, A \, \vert \psi \rangle \\ & \coloneqq \langle \psi, \pi(A) \psi \rangle \end{aligned} \end{displaymath} with respect to some [[star-representation]] \begin{displaymath} \pi \;\colon\; \mathcal{A} \longrightarrow End(\mathcal{H}) \end{displaymath} of $\mathcal{A}$ on (a [[dense subspace]] of) $\mathcal{H}$; where $\langle -,-\rangle$ denotes the [[inner product]] on the [[Hilbert space]]. Originally this was considered for [[C\emph{-algebras]] and [[C}-representations]] (\hyperlink{GelfandNaimark43}{Gelfand-Naimark 43}, \hyperlink{Segal47}{Segal 47}), see for instance (\hyperlink{Schmuedgen90}{Schm\"u{}dgen 90}), but the construction applies to general [[unital algebra|unital]] [[star algebras]] $\mathcal{A}$ (\hyperlink{KhavkineMoretti15}{Khavkine-Moretti 15}) as well as to other coefficient rings, such as to [[formal power series algebras]] over $\mathbb{C}[ [\hbar] ]$ (\hyperlink{BordemannWaldmann96}{Bordemann-Waldmann 96}). The GNS-construction plays a central role in [[algebraic quantum field theory]] (\hyperlink{Haag96}{Haag 96}, \hyperlink{Moretti18}{Moretti 18}, \hyperlink{KhavkineMoretti15}{Khavkine-Moretti 15}), where $\mathcal{A}$ plays the role of an [[algebra of observables]] and $\rho \colon \mathcal{A} \to \mathbb{C}$ the role of an actual state of a [[physical system]] (whence the terminology) jointly constituting the ``[[Heisenberg picture]]''-perspective of [[quantum physics]]; so that the GNS-construction serves to re-construct a corresponding [[Hilbert space|Hilbert]] [[space of states]] as in the [[Schrödinger picture]] of quantum physics. In this context the version for [[C\emph{-algebras]] corresponds to [[non-perturbative quantum field theory]], while the generalization to [[formal power series algebras]] corresponds to [[perturbative quantum field theory]].} \hypertarget{details}{}\subsection*{{Details}}\label{details} \begin{quote}% under construction \end{quote} \hypertarget{for_algebras}{}\subsubsection*{{For $C^\ast$-algebras}}\label{for_algebras} \begin{theorem} \label{}\hypertarget{}{} Given \begin{enumerate}% \item a [[C\emph{-algebra]], $\mathcal{A}$;} \item a [[states in AQFT and operator algebra|state]], $\rho \;\colon\; \mathcal{A} \to \mathbb{C}$ \end{enumerate} there exists \begin{enumerate}% \item a [[C\emph{-representation]]} \begin{displaymath} \pi \;\colon\; \mathcal{A} \longrightarrow End(\mathcal{H}) \end{displaymath} of $\mathcal{A}$ on some [[Hilbert space]] $\mathcal{H}$ \item a [[cyclic vector]] $\psi \in \mathcal{H}$ \end{enumerate} such that $\rho$ is the state corresponding to $\psi$, in that \begin{displaymath} \begin{aligned} \rho(A) & = \langle \psi \vert\, A \, \vert \psi \rangle \\ & \coloneqq \langle \psi , \pi(A) \psi \rangle \end{aligned} \end{displaymath} for all $A \in \mathcal{A}$. \end{theorem} \hypertarget{ForCStarCategories}{}\subsubsection*{{For $C^\ast$-categories}}\label{ForCStarCategories} The GNS construction for $C^\ast$-algebras is a special case of a more general construction of Ghez, Lima and Roberts applied to [[C\emph{-categories]] ([[horizontal categorification]] of $C^\ast$-algebras).} \begin{theorem} \label{}\hypertarget{}{} Let $\mathcal{C}$ be a $C^\ast$-category. Fix an object $A \in \operatorname{Ob}\mathcal{C}$ and let $\sigma$ be a state on the $C^\ast$-algebra $\mathcal{C}(A,A)$. Then there exists a $*$-representation \begin{displaymath} \rho_\sigma \colon \mathcal{C} \to \mathbf{Hilb} \end{displaymath} together with a cyclic vector $\xi \in \rho_\sigma(A)$ such that for all $x \in \mathcal{C}(A,A)$, \begin{displaymath} \sigma(x) = \langle \xi, \rho_\sigma(x)\xi \rangle. \end{displaymath} \end{theorem} A [[C\emph{-algebra]] $\mathcal{A}$ is a $C^\ast$-category with a single [[object]] $\bullet$, where we make the identification $A = \mathcal{A}(\bullet,\bullet)$. In this case the theorem reduces to the classical GNS construction.} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Riesz representation theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original construction for [[C\emph{-algebras]] and [[C}-representations]] is due to \begin{itemize}% \item [[Israel Gelfand]], [[Mark Naimark]], \emph{On the imbedding of normed rings into the ring of operators on a Hilbert space}. Matematicheskii Sbornik. 12 (2): 197--217 (1943) \item [[Irving Segal]], \emph{Irreducible representations of operator algebras} (\href{http://www.ams.org/journals/bull/1947-53-02/S0002-9904-1947-08742-5/S0002-9904-1947-08742-5.pdf}{pdf}). Bull. Am. Math. Soc. 53: 73--88, (1947) \end{itemize} see for instance \begin{itemize}% \item K. Schm\"u{}dgen, \emph{Unbounded operator algebras and representation theory}, Operator theory, advances and applications, vol. 37. Birkh\"a{}user, Basel (1990) \end{itemize} The application to [[algebraic quantum field theory]] is discussed in \begin{itemize}% \item [[Rudolf Haag]], \emph{Local Quantum Physics: Fields, Particles, Algebras}, Texts and Monographs in Physics. Springer (1996). \item [[Valter Moretti]], \emph{Spectral Theory and Quantum Mechanics :Mathematical Structure of Quantum Theories, Symmetries and introduction to the Algebraic Formulation}, 2nd ed. Springer Verlag, Berlin (2018) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Gelfand%E2%80%93Naimark%E2%80%93Segal_construction}{Gelfand-Naimark-Segal construction}} \end{itemize} For general unital [[star-algebras]]: \begin{itemize}% \item [[Igor Khavkine]], [[Valter Moretti]], \emph{Algebraic QFT in Curved Spacetime and quasifree Hadamard states: an introduction}, Chapter 5 in [[Romeo Brunetti]] et al. (eds.) \emph{Advances in Algebraic Quantum Field Theory}, , Springer, 2015 \end{itemize} in relation with the classical moment problem and the notion of [[POVM]] \begin{itemize}% \item Nicolò Drago, [[Valter Moretti]], The notion of observable and the moment problem for \emph{-algebras and their GNS representations (\href{https://arxiv.org/abs/1903.07496}{arXiv.org:1903.07496})} \end{itemize} For [[formal power series algebras]] over $\mathbb{C}[ [ \hbar ] ]$: \begin{itemize}% \item [[Martin Bordemann]], [[Stefan Waldmann]], \emph{Formal GNS Construction and States in Deformation Quantization}, Commun. Math. Phys. (1998) 195: 549. (\href{https://arxiv.org/abs/q-alg/9607019}{arXiv:q-alg/9607019}, \href{https://doi.org/10.1007/s002200050402}{doi:10.1007/s002200050402}) \end{itemize} Discussion in terms of [[universal properties]] in ([[higher category theory|higher]]) [[category theory]] is in \begin{itemize}% \item [[Bart Jacobs]], \emph{Involutive Categories and Monoids, with a GNS-correspondence}, Foundations of Physics, July 2012, Volume 42, Issue 7, pp 874--895 (\href{https://arxiv.org/abs/1003.4552}{arXiv:1003.4552}) \item [[Arthur Parzygnat]], \emph{From observables and states to Hilbert space and back: a 2-categorical adjunction} (\href{https://arxiv.org/abs/1609.08975}{arXiv:1609.08975}) \end{itemize} category: operator algebras [[!redirects Gelfand-Naimark-Segal construction]] [[!redirects Gelfand–Naimark–Segal construction]] [[!redirects Gelfand--Naimark--Segal construction]] [[!redirects GNS construction]] [[!redirects GNS-construction]] [[!redirects GNS representation]] [[!redirects GNS-representation]] [[!redirects GNS theorem]] \end{document}