\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Generalized higher loop spaces} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \noindent\hyperlink{overview}{Overview}\dotfill \pageref*{overview} \linebreak \noindent\hyperlink{relation_with_usual_hochschild_and_cyclic_homology}{Relation with usual Hochschild and cyclic homology}\dotfill \pageref*{relation_with_usual_hochschild_and_cyclic_homology} \linebreak \noindent\hyperlink{related_entry}{Related entry}\dotfill \pageref*{related_entry} \linebreak Generalized higher loop spaces are analogs of [[loop spaces]] adapted to the setting of [[overconvergent global analytic geometry]]. \hypertarget{overview}{}\subsection*{{Overview}}\label{overview} Recall that one may define higher Hochschild homology of a derived scheme as functions on its completed formal higher loop space \begin{displaymath} \hat{L}^n X:=\widehat{Hom}_{dSt}(S^n,X). \end{displaymath} There is a natural action of the symmetry group of $S^n$ on this space. One may try to define analogs of this construction for other symmetry groups, at least on a local field, to try to use these spaces to study representation theory. The basic idea here is to start with the non-strict analytic space $GL_n$, and look at the mapping space \begin{displaymath} L_{GL_n}X:=Hom_{dSt}(GL_n,X). \end{displaymath} It may only be definable for usual spaces, not Artin stacks, but one has to check that. In any case, there is a natural (in the setting of [[generalized global analytic geometry]]) subgroup $U(n)\subset GL_n$, and one may also consider \begin{displaymath} L_{U(n)}X:=\widehat{Hom}_{dSt}(U(n),X). \end{displaymath} Normally, since $U(n)$ is proper, this space is finite dimensional in the differential stacky sense. One may then define linear and unitary higher Hochschild cohomology of dimension $n$ to be given by functions on the moduli spaces \begin{displaymath} M_{GL_n}X:=[L_{GL_n}X/GL_n] \end{displaymath} and \begin{displaymath} M_{U(n)}X:=[L_{U(n)}X/U(n)]. \end{displaymath} Up to $D^1$-homotopy, both spaces should be identical. Now the unitary moduli space has a strict global definition, which means it is a very rigid object (essentially, a kind of Arakelov stack, given by a scheme-moduli stack together with an archimedean structure). The determinant map $det:GL_n\to GL_1$ induces a natural morphism \begin{displaymath} det^*:L_{GL_n}X\to L_{GL_1}X, \end{displaymath} which may give also a morphism \begin{displaymath} det^*:M_{GL_n}X\to M_{GL_1}X. \end{displaymath} Remark now that there exists an exact sequence of (non-strict) analytic groups \begin{displaymath} 1\to U(1)\to GL_1\to N_1\to 1 \end{displaymath} where $N$ is the group of norms of elements in $GL_1$. In dimension $n$, we only have a groupoid $N_n$. However, there is always the possibility to define a new moduli space given by \begin{displaymath} D_{GL_n}X:=[L_{GL_n}X/U(n)]. \end{displaymath} This moduli space is equipped with an action of the groupoid $N_n$. In dimension $1$ over $C$, if $X$ is, say, projective, we get, as functions on $D_{GL_1}(X)$, a (probably infinite dimensional) space over $C$ together with an action of $N_1\cong \mathbb{R}_+^*$. In the $p$-adic situation, we have $N_1=p^\mathbb{Z}$. On a global field, one may work over adeles to get a sensible construction. One should also not forget that there is (in characteristic $0$, e.g., on adeles of $\mathbb{Q}$) a logarithm map \begin{displaymath} log:\overset{\circ}{D}(1,1)_{GL_1}\to Lie(GL_1) \end{displaymath} that allows us to relate the above constructions to the notion of [[generalized lambda-structure]]. \hypertarget{relation_with_usual_hochschild_and_cyclic_homology}{}\subsection*{{Relation with usual Hochschild and cyclic homology}}\label{relation_with_usual_hochschild_and_cyclic_homology} Remark that, even over $\mathbb{C}$, the $D^1$-homotopy invariant version of $M_{U(1)}X$ is not equivalent to the (simplicial) loop space $L^1 X$. Indeed, to get a sensible relation between our moduli spaces and loop spaces (i.e., usual Hochschild and negative cyclic homology), one has to be very careful: inverting $D^1$ is not the right thing to do because it just gives usual loops up to homotopy, not the derived ones, which are necessary for differential constructions. A nice way to circumvent this problem is given by the following construction: let $R$ and $S$ be two base ind-Banach ring, and consider the category of derived stacks on $R$ with values in the (say) stable $D^1$-homotopy category of usual stacks over $S$. If we start with $S=\mathbb{C}$ and $R=(\Z,|\cdot|_0)$, we get a setting that is appropriate for explaining the relation between derived loop spaces and generalized higher loop spaces. Indeed, one may see $GL_n$ as a constant derived stack given by the associated group object of the $D^1$-homotopy category, denoted $GL_n^c$. Then the corresponding moduli space $M^c_{GL_n}X$ is related to the derived loop space in the case $n=1$: they are homotopy equivalent because the $D^1$-homotopy category over $C$ is equivalent (following Ayoub) to the usual homotopy category of simplicial sets. If one wants to avoid getting back the usual loop space, one may work with the category \begin{displaymath} Shv(DAff^\dagger_S\times SAff^\dagger_R,{}^\infty Grpd) \end{displaymath} of sheaves of sheaves on smooth affinoid spaces over $R$ on derived affinoid algebras over $S$. This may be seen as an extension of scalars of the $\infty$-category of derived analytic stacks over $S$ along the inclusion of infinity-groupoids into usual analytic higher stacks over $R$ (that form a presentable infinity-category, so that the tensor product operation works). Recall that we may define two types of linear group stack-valued derived stacks by setting, for $(A,B)\in DAff^\dagger_S\times SAff^\dagger_R$, the constant linear stack to be defined associated to the prestack \begin{displaymath} GL_n^c(A,B)=GL_n(B), \end{displaymath} and the usual derived analytic stack \begin{displaymath} GL_n^d(A,B)=GL_n(A). \end{displaymath} Having a derived and a non-derived direction seems to be quite important. Indeed, the derived direction is needed for doing differential calculus, and the non-derived direction is needed for doing $D^1$-homotopy theory. Combining the two may give an optimal setting for relating generalized loop spaces with usual derived loop space. There is a relation between the homotopy and classical generalized higher loop spaces given by the following: if we assume given a morphism $R\to S$, we may define the diagonal (extension of scalars) functor \begin{displaymath} \Delta:SAff^\dagger_R\longrightarrow DAff^\dagger_R\times SAff^\dagger_S, \end{displaymath} to get a natural morphism of stack-valued derived stacks induced by \begin{displaymath} \Delta^*GL_n^d(A)\cong GL_n(A)\longrightarrow GL_n(A_S)\cong\Delta^*GL_n^c(A). \end{displaymath} We may now define a version of the generalized higher loop spaces that is directly related to Hochschild cohomology: we may define \begin{displaymath} L^{dc}_{GL_n}(X):= \{(f,g)\in Hom(GL_n^d,X)\times Hom(GL_n^c,X),\; \Delta^*f\cong \Delta^* g\}. \end{displaymath} This means that we are choosing (for $n=1$), for every classical derived loop $g:GL_n^c\to X$ (up to $D^1$-homotopy, say), a corresponding generalized derived loop $f:GL_n\to X$, that we may call its representative. Forgetting the representative gives back the usual derived loop spaces if $R=(\Z,|\cdot|_0)$ and $S=(\C,|\cdot|_\infty)$, and $X$ is a derived scheme over $\Z$, and forgetting the classical derived loop gives the generalized higher derived loop space defined at the beginning of this page. We thus have two projections \begin{displaymath} L^d_{GL_n}X\leftarrow L^{dc}_{GL_n}(X)\to L^c_{GL_n}(X) \end{displaymath} that may be used to define a correspondence between modules on the generalized higher derived loop space and on the classical derived loop space. \hypertarget{related_entry}{}\subsection*{{Related entry}}\label{related_entry} [[overconvergent derived loop spaces]] \end{document}