\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Geometry of Interaction} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToQuantumOperations}{Relation to superoperators and quantum operations}\dotfill \pageref*{RelationToQuantumOperations} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} What has been called \emph{Geometry of Interaction} (\hyperlink{Girard89}{Girard 89}) is a kind of [[semantics]] for [[linear logic]]/[[linear type theory]] that is however different in method from the usual [[categorical semantics]] in [[monoidal categories]]. Instead of interpreting a [[proof]] of a linear entailment $A\vdash B$ as a [[morphism]] between [[objects]] $A$ and $B$ in a [[monoidal category]] as in [[categorical semantics]], the \emph{Geometry of Interaction} interprets it as an [[endomorphism]] on the object $A\multimap B$. This has been named \emph{operational semantics} to contrast with the traditional \emph{denotational semantics}. That also the ``operational semantics'' of GoI has an interpretation in [[category theory]], though, namely in [[compact closed categories]] induced from [[traced monoidal categories]] was first suggested in (\hyperlink{JoyalStreetVerity96}{Joyal-Street-Verity 96}) and then developed in (\hyperlink{Haghverdi00}{Haghverdi 00}, \hyperlink{AbramskyHaghverdiScott02}{Abramsky-Haghverdi-Scott 02}, \hyperlink{HaghverdiScott05}{Haghverdi-Scott 05}). See (\hyperlink{Shirahata}{Shirahata}) for a good review. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToQuantumOperations}{}\subsubsection*{{Relation to superoperators and quantum operations}}\label{RelationToQuantumOperations} We discuss a relation of the GoI to [[superoperators]]/[[quantum operations]] in [[quantum physics]]. According to (\hyperlink{AbramskyHaghverdiScott02}{Abramsky-Haghverdi-Scott 02, remark 5.8}, \hyperlink{Haghverdi00b}{Haghverdi 00b, section 6}) all the standard and intended interpretations of the GoI take place in those [[compact closed categories]] $Int(\mathcal{C})$ free on a [[traced monoidal category]] $\mathcal{C}$ (as discussed there). In these references therefore the notation $Int(-)$ from (\hyperlink{JoyalStreetVerity96}{Joyal-Street-Verity 96}) is changed to $\mathcal{G}(-)$, for ``Geometry of Interaction construction'' (see \hyperlink{AbramskyHaghverdiScott02}{Abramsky-Haghverdi-Scott 02, p. 11}). The objects of $Int(\mathcal{C})$ are pairs $(A^+, A^-)$ of objects of $\mathcal{C}$, a morphism $(A^+ , A^-) \to (B^+ , B^-)$ in $Int(\mathcal{C})$ is given by a morphism in $\mathcal{C}$ of the form \begin{displaymath} \itexarray{ A^+\otimes B^- \\ \downarrow \\ A^- \otimes B^+ } \end{displaymath} in $\mathcal{C}$, and [[composition]] of two such morphisms $(A^+ , A^-) \to (B^+ , B^-)$ and $(B^+ , B^-) \to (C^+ , C^-)$ is given by [[trace|tracing out]] $B^+$ and $B^-$ in the evident way. We observe now that subcategories of such $Int(\mathcal{C})$ are famous in [[quantum physics]] as ``categories of [[superoperators]]'' or ``categories of [[quantum operations]]'', formalizing [[linear maps]] on spaces of [[operators]] on a [[Hilbert spaces]] that takes [[density matrices]] (hence mixed [[quantum states]]) to density matrices (``[[completely positive maps]]''). First notice that if the [[traced monoidal category]] structure on $\mathcal{C}$ happens to be that induced by a [[compact closed category]] structure, then by compact closure the morphisms $(A^+ , A^-) \to (B^+ , B^-)$ in $Int(\mathcal{C})$ above are equivalently morphisms in $\mathcal{C}$ of the form \begin{displaymath} (A^-)^\ast \otimes A^+ \longrightarrow (B^-)^\ast \otimes B^+ \end{displaymath} and if moreover one concentrates on the case where $A \coloneqq A^- \simeq A^+$ etc. then these are morphisms of the form \begin{displaymath} End(A) \longrightarrow End(B) \,. \end{displaymath} Under this identification the somewhat curious-looking composition in $Int(\mathcal{C})$ given by tracing in $\mathcal{C}$ becomes just plain composition in $\mathcal{C}$. Subcategories (non-full) of $Int(\mathcal{C})$ consisting of morphisms of this form in some ambient $\mathcal{C}$ have been considered in (\hyperlink{Selinger05}{Selinger 05}), there denoted $CMP(\mathcal{C})$, and shown to formalize the concept of [[quantum operations]] in [[quantum physics]]. For a quick review of Selinger's construction see for instance (\hyperlink{CoeckeHeunen11}{Coecke-Heunen 11, section 2}). Comments related to the relation between GoI and such constructions appear in (\hyperlink{AbramskyCoecke02}{Abramsky-Coecke 02}). Now the $CPM(-)$ construction requires and assumes that $\mathcal{C}$ has all [[dual objects]] (which in the standard model means to restrict to [[Hilbert spaces]] of [[quantum states]] with are of [[finite]] [[dimension]]). To generalize away from this requirement a more general definition of quantum operations in $\mathcal{C}$ is given in (\hyperlink{CoeckeHeunen11}{Coecke-Heunen 11, def. 1}), there denoted $CP(\mathcal{C})$. Direct inspection shows that $CP(\mathcal{C})$ is still a (non-full) subcategory of $Int(\mathcal{C})$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[transcendental syntax]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original references are \begin{itemize}% \item [[Jean-Yves Girard]]. Towards a geometry of interaction. In Categories in Computer Science and Logic, pages 69 -- 108, Providence, 1989. American Mathematical Society. Proceedings of Symposia in Pure Mathematics n92. \end{itemize} \begin{itemize}% \item [[Jean-Yves Girard]]. Geometry of interaction I: interpretation of system F. In Ferro, Bonotto, Valentini, and Zanardo, editors, Logic Colloquium `88, pages 221 -- 260, Amsterdam, 1989. North-Holland. \item [[Jean-Yves Girard]]. Geometry of interaction II : deadlock-free algorithms. In Martin-L\"o{}f and Mints, editors, Proceedings of COLOG 88, volume 417 of Lecture Notes in Computer Science, pages 76 -- 93, Heidelberg, 1990. Springer-Verlag. \item [[Jean-Yves Girard]]. Geometry of interaction III : accommodating the additives. In Girard, Lafont, and Regnier, editors, Advances in Linear Logic, pages 329 -- 389, Cambridge, 1995. Cambridge University Press. \item [[Jean-Yves Girard]]. Geometry of interaction IV : the feedback equation. In Stoltenberg-Hansen and V\"a{}\"a{}n\"a{}nen, editors, Logic Colloquium `03, pages 76 -- 117. Association for Symbolic Logic, 2006. \item [[Jean-Yves Girard]]. Geometry of interaction V : logic in the hyperfinite factor, in memoriam Claire Delaleu (1991-2009). Fully revised version (October 2009). (\href{http://iml.univ-mrs.fr/~girard/GdI5.1.pdf}{pdf}) \item [[Jean-Yves Girard]]. Geometry of Interaction VI: a blueprint for Transcendental Syntax, January 2013, revised August 28th 2013. (\href{http://iml.univ-mrs.fr/~girard/blueprint.pdf}{pdf}) \end{itemize} Reviews include \begin{itemize}% \item [[Jean-Yves Girard]], Part VI of \emph{[[Lectures on Logic]]} \item Masaru Shirahata, \emph{Geometry of Interaction explained}, (\href{http://www.kurims.kyoto-u.ac.jp/~hassei/algi-13/kokyuroku/19_shirahata.pdf}{pdf}) \end{itemize} \begin{itemize}% \item [[Samson Abramsky]], E. Haghverdi and P. Scott, ``Geometry of Interaction and linear combinatory algebra,'' Mathematical Structures in Computer Science (2002), vol. 12, pp. 625-665. (\href{http://www.cs.ox.ac.uk/files/328/ahs.ps}{ps}) \item [[Samson Abramsky]] and R. Jagadeesan, ``New Foundations for the Geometry of Interaction,'' Proceedings 7th Annual IEEE Symp. on Logic in Computer Science, LICS'92, Santa Cruz, CA, USA, 22--25 June 1992. (\href{http://www.cs.ox.ac.uk/files/300/nfgoi.pdf}{pdf}) \item Harry G. Mairson, ``From Hilbert Spaces to Dilbert Spaces: Context Semantics Made Simple'', Proceedings of FST TCS 2002. (\href{http://www.cs.brandeis.edu/~mairson/Papers/fsttcs02.pdf}{pdf}) \item Linear Logic Wiki, \emph{\href{http://llwiki.ens-lyon.fr/mediawiki/index.php/Geometry_of_interaction}{Geometry of Interaction}} \item [[Daniel Murfet]], section 5 of \emph{Logic and linear algebra: an introduction} (\href{http://arxiv.org/abs/1407.2650}{arXiv:1407.2650}) \end{itemize} The operational categorical semantics in [[traced monoidal categories]] is due to \begin{itemize}% \item [[André Joyal]], [[Ross Street]], [[Dominic Verity]], \emph{Traced monoidal categories}, Math. Proc. Camb. Phil. Soc. (1996), 119, 447 (\href{http://sci-prew.inf.ua/v119/3/S0305004100074338.pdf}{pdf}) \end{itemize} \begin{itemize}% \item [[Esfandir Haghverdi]], \emph{A Categorical Approach to Linear Logic}, Geometry of Proofs and Full Completeness, PhD Thesis, University of Ottawa, Canada 2000. \end{itemize} \begin{itemize}% \item [[Esfandir Haghverdi]], \emph{Unique Decomposition Categories, Geometry of Interaction, and Combinatory Logic, Math. Struc. in Comp. Sci., 10, pp. 205-231.} \end{itemize} \begin{itemize}% \item [[Samson Abramsky]], [[Esfandir Haghverdi]], [[Philip Scott]], \emph{Geometry of Interaction and Linear Combinatory Algebras}. MSCS, vol. 12(5), 2002, 625-665, CUP (2002) (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7818}{citeseer}) \item [[Esfandir Haghverdi]], [[Philip Scott]], \emph{A categorical model for the geometry of interactions} ,Theoretical Computer Science, 2005 (\href{http://xavier.informatics.indiana.edu/~ehaghver/HS-TCS-04.pdf}{pdf}) \end{itemize} Discussion of [[quantum operations]]/[[completely positive maps]] mentioned above is in \begin{itemize}% \item [[Peter Selinger]], \emph{Dagger-compact closed categories and completely positive maps}, Electronic Notes in Theoretical Computer Science (special issue: Proceedings of the 3rd International Workshop on Quantum Programming Languages). 2005 ([[SelingerPositiveMaps.pdf:file]], \href{http://www.mscs.dal.ca/~selinger/papers/dagger.ps}{ps}) \end{itemize} \begin{itemize}% \item [[Samson Abramsky]], [[Bob Coecke]], \emph{Physical Traces: Quantum vs. Classical Information Processing}, Electronic Notes in Theoretical Computer Science 69 (2003) (\href{http://arxiv.org/abs/cs/0207057}{arXiv:0207057}) \end{itemize} \begin{itemize}% \item [[Bob Coecke]], [[Chris Heunen]], \emph{Pictures of complete positivity in arbitrary dimension}, EPTCS 95, 2012, pp. 27-35 (\href{http://arxiv.org/abs/1110.3055}{arXiv:1110.3055}) \end{itemize} [[!redirects Geometry of interaction]] [[!redirects geometry of interaction]] [[!redirects Geometry of Interactions]] [[!redirects geometry of interactions]] \end{document}