\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Gleason's theorem} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{aqft}{}\paragraph*{{AQFT}}\label{aqft} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{implications_for_quantum_logic}{Implications for Quantum Logic}\dotfill \pageref*{implications_for_quantum_logic} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{the_theorem}{The Theorem}\dotfill \pageref*{the_theorem} \linebreak \noindent\hyperlink{classical_gleasons_theorem}{Classical Gleason's Theorem}\dotfill \pageref*{classical_gleasons_theorem} \linebreak \noindent\hyperlink{extension_to_certain_types_of_von_neumann_algebras}{Extension to Certain Types of von Neumann Algebras}\dotfill \pageref*{extension_to_certain_types_of_von_neumann_algebras} \linebreak \noindent\hyperlink{gleasons_theorem_for_povms}{Gleason's Theorem for POVMs}\dotfill \pageref*{gleasons_theorem_for_povms} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{counterexample_for_dimension_two}{Counterexample For Dimension Two}\dotfill \pageref*{counterexample_for_dimension_two} \linebreak \noindent\hyperlink{related_theorems}{Related theorems}\dotfill \pageref*{related_theorems} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The classical \emph{Gleason theorem} says that a [[state on a star-algebra|state]] on the [[C\emph{-algebra]] $\mathcal{B}(\mathcal{H})$ of all [[bounded operators]] on a [[Hilbert space]] is uniquely described by the values it takes on the orthogonal [[projections]] $\mathcal{P}$, if the dimension of the [[Hilbert space]] $\mathcal{H}$ is not 2.} In other words: every [[quasi-state]] is already a state if $dim(H) \gt 2$. It is possible to extend the theorem to certain types of [[von Neumann algebras]] (e.g. obviously [[von Neumann algebra factor|factors]] of type $I_2$ have to be excluded). Gleason's theorem is also valid for real and quaternionic Hilbert spaces as proved by Varadarajan in 1968. A gap of that proof has been fixed in 2018 by V.Moretti and M.Oppio. \hypertarget{implications_for_quantum_logic}{}\subsubsection*{{Implications for Quantum Logic}}\label{implications_for_quantum_logic} Roughly, Gleason's theorem says that ``a quantum state is completely determined by only knowing the answers to all of the possible yes/no questions''. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \begin{defn} \label{}\hypertarget{}{} Let $\rho: \mathcal{P} \to [0, 1]$ such that for every finite family $\{ P_1, ..., P_n: P_i \in \mathcal{P} \}$ of pairwise orthogonal projections we have $\rho(\sum_{i=1}^n P_i) = \sum_{i=1}^n \rho(P_i)$, then $\rho$ is a \textbf{finitely additive measure} on $\mathcal{P}$. If the family is not finite, but countable, then $\rho$ is a \textbf{sigma-finite measure}. \end{defn} \hypertarget{the_theorem}{}\subsection*{{The Theorem}}\label{the_theorem} \hypertarget{classical_gleasons_theorem}{}\subsubsection*{{Classical Gleason's Theorem}}\label{classical_gleasons_theorem} \begin{theorem} \label{}\hypertarget{}{} If $dim(\mathcal{H}) \neq 2$ then each finitely additive measure on $\mathcal{P}$ can be uniquely extended to a state on $\mathcal{B}(\mathcal{H})$. Conversly the restriction of every state to $\mathcal{P}$ is a finitley additive measure on $\mathcal{P}$. The same holds for sigma-finite measures and [[normal state|normal states]]: Every sigma-finite measure can be extended to a normal state and every normal state restricts to a sigma-finite measure. \end{theorem} \hypertarget{extension_to_certain_types_of_von_neumann_algebras}{}\subsubsection*{{Extension to Certain Types of von Neumann Algebras}}\label{extension_to_certain_types_of_von_neumann_algebras} \ldots{} \hypertarget{gleasons_theorem_for_povms}{}\subsubsection*{{Gleason's Theorem for POVMs}}\label{gleasons_theorem_for_povms} In [[quantum information theory]], one often considers positive operator-valued measures ([[POVM]]s) instead of [[Hermitian operators]] as [[observables]]. While a Hermitian operator is given by a family of [[projection operator]]s $P_i$ such that $\sum_i P_i = 1$, a POVM is given more generally by any family of positive-semidefinite operators $E_i$ such that $\sum_i E_i = 1$. In the analog of Gleason's Theorem for POVMs, therefore, we start with $\rho\colon \mathcal{E} \to [0,1]$, where $\mathcal{E}$ is the space of all positive-semidefinite operators. Then if $\sum_i \rho(E_i) = 1$ whenever $\rho(\sum_i E_i) = 1$, the theorem states that $\rho$ has a unique extension to a mixed [[quantum state]]. As a theorem, Gleason's Theorem for POVMs is much weaker than the classical Gleason's Theorem, since we must begin with $\rho$ defined on a much larger space of operators. However, some content does remain, since we have not assumed any continuity properties of $\rho$. Also, Gleason's Theorem for POVMs has a much simpler proof, which works regardless of the dimension. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{counterexample_for_dimension_two}{}\subsubsection*{{Counterexample For Dimension Two}}\label{counterexample_for_dimension_two} See example 8.1 in the book by Parthasarathy (see references). Our Hilbert space is $\mathbb{R}^2$. Projections $P$ on it are either identical zero, the identity, or projections on a one dimensional subspace, so that these $P$ can be written in the [[bra-ket notation]] as \begin{displaymath} P = {|u \rangle} {\langle u|} \end{displaymath} with a unit vector $u$, i.e. $u \in \mathbb{R}^2, {\|u\|} = 1$. In this finite dimensional case sigma-finite and finite are equivalent, and a finite probability measure is equivalent to a (complex valued) function such that \begin{displaymath} f(c u) = f(u) \end{displaymath} \begin{displaymath} \sum_i f(u_i) = 1 \end{displaymath} for every scalar $c$ of modulus one, every unit vector $u$ and every orthonormal basis $\{u_1, u_2\}$. If there is a state that extends such a measure and therefore restricts to such a measure on projections, there would be a linear operator $T$ such that \begin{displaymath} f(u) = {\langle u | T u \rangle} \end{displaymath} for all unit vectors $u$. It turns out however that the conditions imposed on $f$ are not enough in two dimensions to enforce this kind of linearity of $f$. Heuristically, in three dimensions there are more rotations than in two, therefore the ``rotational invariance'' of (the conditions imposed on) $f$ is more restrictive in three dimensions than it is in two dimensions. In two dimensions, choose a function $g$ on $[0, \frac{\pi}{2})$ such that $0 \le g(\theta) \le 1$ everywhere. There are no further restrictions, that is $g$ need not be continuous, for example. Now we can define a probability measure on the projections by \begin{displaymath} f(u) = \begin{cases} g(\theta) \; \; \text{for} \; \; 0 \le \theta \lt \frac{\pi}{2} \\ 1 - g(\theta - \frac{\pi}{2}) \; \; \text{for} \; \; \frac{\pi}{2} \le \theta \lt \pi \\ f(-u) \; \; \text{as defined in the first two items, else} \end{cases} \end{displaymath} This probability measure will in general not extend to a state. \hypertarget{related_theorems}{}\subsection*{{Related theorems}}\label{related_theorems} Other theorems about the foundations and [[interpretation of quantum mechanics]] include: \begin{itemize}% \item [[order-theoretic structure in quantum mechanics]] \begin{itemize}% \item [[Kochen-Specker theorem]] \item [[Alfsen-Shultz theorem]] \item [[Harding-Döring-Hamhalter theorem]] \end{itemize} \item [[Fell's theorem]] \item [[Wigner theorem]] \item [[Bell's theorem]] \item [[Bub-Clifton theorem]] \item [[Kadison-Singer problem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Gleason's original paper outlining the theorem is \begin{itemize}% \item [[Andrew Gleason]], \emph{Measures on the closed subspaces of a Hilbert space}, Journal of Mathematics and Mechanics, Indiana Univ. Math. J. 6 No. 4 (1957), 885--893 (\href{http://www.iumj.indiana.edu/IUMJ/FULLTEXT/1957/6/56050}{web}) \end{itemize} A standard textbook exposition of the theorem and its meaning is \begin{itemize}% \item [[Huzihiro Araki]], \emph{[[Mathematical Theory of Quantum Fields]]} , \end{itemize} where it appears as theorem 2.3 (without proof). A monograph stating and proving both the classical theorem and extensions to [[von Neumann algebras]] is \begin{itemize}% \item Jan Hamhalter, \emph{Quantum measure theory} (\href{http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1038.81003&format=complete}{ZMATH entry}) \end{itemize} The classical theorem is proved also in this monograph: \begin{itemize}% \item K. R. Parthasarathy, \emph{An Introduction to Quantum Stochastic Calculus} (\href{http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0751.60046&format=complete}{ZMATH}) \end{itemize} Gleason's Theorem for POVMs is proved here: \begin{itemize}% \item Paul Busch, \emph{Quantum states and generalized observables: a simple proof of Gleason's theorem}; (1999) (\href{http://arxiv.org/abs/quant-ph/9909073}{arXiv}) \end{itemize} The failure of Gleason's theorem for \emph{classical} states (on [[Poisson algebra]]s) is discussed in \begin{itemize}% \item Michael Entov, Leonid Polterovich, \emph{Symplectic quasi-states and semi-simplicity of quantum homology} (\href{http://arxiv.org/abs/0705.3735}{arXiv}). \end{itemize} Gleason's Theorem proved for real, complex and quaternionic Hilbert spaces using the notion of real trace. \begin{itemize}% \item [[Valter Moretti]], Marco Oppio, \emph{The correct formulation of Gleason's theorem in quaternionic Hilbert spaces}, Ann. Henri Poincaré 19 (2018), 3321-3355 (\href{http://arxiv.org/abs/1803.06882}{arXiv:1803.06882}) \end{itemize} See also \begin{itemize}% \item Wikipedia on \href{http://en.wikipedia.org/wiki/Gleason%27s_theorem}{Gleason's theorem} \end{itemize} [[!redirects Gleason's theorem]] [[!redirects Gleason's theorem]] [[!redirects Gleason theorem]] [[!redirects Gleason's Theorem]] [[!redirects Gleason's Theorem]] [[!redirects Gleason Theorem]] \end{document}