\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Gray tensor product} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{Gray tensor product} is a ``better'' replacement for the cartesian product of [[strict 2-category|strict 2-categories]]. To get the idea it suffices to consider the 2-category $\mathbf{2}$ which has two objects, 0 and 1, one non-identity morphism $0\to 1$, and no nonidentity 2-cells. Then the cartesian product $\mathbf{2}\times\mathbf{2}$ is a commuting square, while the Gray tensor product $\mathbf{2}\otimes\mathbf{2}$ is a square which commutes up to isomorphism. More generally, for any 2-categories $C$ and $D$, a 2-functor $C\times\mathbf{2} \to D$ consists of two 2-functors $C\to D$ and a strict 2-natural transformation between them, while a 2-functor $C\otimes\mathbf{2} \to D$ consists of two 2-functors $C\to D$ and a \emph{pseudonatural} transformation between them. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Following up on the last comment, $B\otimes C$ can be defined by \begin{displaymath} 2Cat(B\otimes C, D) \cong 2Cat(B, Ps(C,D)) \end{displaymath} where $Ps(C,D)$ is the 2-category of 2-functors, pseudonatural transformations, and modifications $C\to D$. In other words, the category $2Cat$ of strict 2-categories and strict 2-functors is a [[closed monoidal category|closed]] [[symmetric monoidal category]], whose tensor product is $\otimes$ and whose internal hom is $Ps(-,-)$. \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \begin{itemize}% \item When considered with this monoidal structure, $2Cat$ is often called $Gray$. [[Gray-category|Gray-categories]], or categories [[enriched category|enriched]] over $Gray$, are a model for [[semi-strict infinity-category|semi-strict]] 3-categories. Categories enriched over $2Cat$ with its cartesian product are \emph{strict} 3-categories, which are not as useful. This is one precise sense in which the Gray tensor product is ``more correct'' than the cartesian product. \item $Gray$ is a rare example of a non-[[cartesian monoidal category|cartesian]] monoidal category whose unit object is nevertheless the terminal object --- that is, a [[semicartesian monoidal category]]. \item There are also versions of the Gray tensor product in which pseudonatural transformations are replaced by lax or oplax ones. (In fact, these were the ones originally defined by Gray.) \item $Gray$ is actually a monoidal [[model category]] (that is, a model category with a monoidal structure that interacts well with the model structure), which $2Cat$ with the cartesian product is not. In particular, the cartesian product of two cofibrant 2-categories need not be cofibrant. This is another precise sense in which the Gray tensor product is ``more correct'' than the cartesian product. \item The cartesian monoidal structure is sometimes called the ``black'' product, since the square $2\times 2$ is ``completely filled in'' (i.e. it commutes). There is another ``white'' tensor product in which the square $2\Box 2$ is ``not filled in at all'' (doesn't commute at all), and the ``gray'' tensor product is in between the two (the square commutes up to an isomorphism). This is a pun on the name of John Gray, for whom the Gray tensor product is named. The ``white'' tensor product is also called the [[funny tensor product]]. \item There are generalizations to [[higher category theory|higher categories]] of the Gray tensor product. In particular there is a tensor product on [[strict omega-category|strict omega-categories]] -- the [[Crans-Gray tensor product]] -- which is such that restricted to strict 2-categories it reproduces the Gray tensor product. \item A [[closed monoidal category|closed monoidal structure]] on [[strict omega-category|strict omega-categories]] is introduced by Al-Agl, Brown and Steiner. This uses an equivalence between the categories of strict (globular) omega categories and of strict cubical omega categories with connections; the construction of the closed monoidal structure on the latter category is direct and generalises that for strict cubical omega groupoids with connections established by Brown and Higgins. \end{itemize} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item see also [[generalized Gray tensor product]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item John W. Gray, \emph{Formal category theory: adjointness for 2-categories}, Lecture Notes in Mathematics, Vol. 391. Springer-Verlag, Berlin-New York, 1974. xii+282 pp doi:\href{https://doi.org/10.1007/BFb0061280}{10.1007/BFb0061280} (see also [[Adjointness for 2-Categories]]) \item Robert Gordon, [[John Power]], [[Ross Street]]. \emph{Coherence for tricategories}, Mem. Amer. Math. Soc. 117 (1995), no. 558, vi+81 pp. doi:\href{http://dx.doi.org/10.1090/memo/0558}{10.1090/memo/0558} (\href{https://bookstore.ams.org/memo-117-558/}{AMS bookstore} incl. free sample chapter) \item [[Stephen Lack]], \emph{A Quillen model structure for 2-categories}, K-Theory, 26(2) (2002) pp171-205, (\href{http://maths.mq.edu.au/~slack/papers/qmc2cat.ps.gz}{gzipped .ps}) (doi:\href{https://doi.org/10.1023/A:1020305604826}{10.1023/A:1020305604826} - requires Portico subscription) \item [[Stephen Lack]], \emph{A Quillen model structure for bicategories}, K-theory, 33(3) (2004) pp185-197, (\href{http://maths.mq.edu.au/~slack/papers/qmcbicat.ps.gz}{gzipped .ps}) (doi:\href{https://doi.org/10.1007/s10977-004-6757-9}{10.1007/s10977-004-6757-9} - requires Portico subscription) \item [[Ronnie Brown]] and P.J. Higgins, Tensor products and homotopies for $\omega$-groupoids and crossed complexes, J. Pure Appl. Alg. 47 (1987) 1-33. doi:\href{https://doi.org/10.1016/0022-4049(87%2990099-5}{10.1016/0022-4049(87)90099-5}, (\href{https://pdfs.semanticscholar.org/3323/d82ed1effb1953a6af573aab2e3fb0b02394.pdf}{pdf}) \item F.A. Al-Agl, R. Brown and R. Steiner, \emph{Multiple categories: the equivalence between a globular and cubical approach}, Advances in Mathematics, 170 (2002) 71-118. doi:\href{https://doi.org/10.1006/aima.2001.2069}{10.1006/aima.2001.2069}, arXiv:\href{https://arxiv.org/abs/math/0007009}{math/0007009} \end{itemize} The Gray tensor product as the left Kan extension of a tensor product on the full subcategory $Cu$ of $2Cat$ is on page 16 of \begin{itemize}% \item [[Ross Street]], \emph{Gray's tensor product of 2-categories}, 22-page handwritten note, (1988) (\href{http://maths.mq.edu.au/~street/GrayTensor.pdf}{PDF at Macquarie}) \end{itemize} A general theory of lax tensor products, unifying Gray tensor products with the [[Crans-Gray tensor product]] is in \begin{itemize}% \item [[Michael Batanin]], [[Denis-Charles Cisinski]], [[Mark Weber]], \emph{Multitensor lifting and strictly unital higher category theory} (\href{http://arxiv.org/abs/1209.2776}{arXiv:1209.2776}) \end{itemize} A proof that the Gray tensor product does form a monoidal structure, based only on its universal property, is in \begin{itemize}% \item [[John Bourke]], [[Nick Gurski]], \emph{The Gray tensor product via factorisation}, Appl Categor Struct \textbf{25} (2017) p603-624, doi:\href{https://doi.org/10.1007/s10485-016-9467-6}{10.1007/s10485-016-9467-6}, arXiv:\href{http://arxiv.org/abs/1508.07789}{1508.07789} \end{itemize} [[!redirects Gray]] \end{document}