\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Gromov-Witten invariants} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{relation_to_tqft}{Relation to TQFT}\dotfill \pageref*{relation_to_tqft} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{expositions}{Expositions}\dotfill \pageref*{expositions} \linebreak \noindent\hyperlink{via_geometric_quantization}{Via geometric quantization}\dotfill \pageref*{via_geometric_quantization} \linebreak \noindent\hyperlink{as_a_tcft}{As a TCFT}\dotfill \pageref*{as_a_tcft} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{in_higher_differential_geometry__on_orbifolds}{In higher differential geometry / on orbifolds}\dotfill \pageref*{in_higher_differential_geometry__on_orbifolds} \linebreak \noindent\hyperlink{in_terms_of_motives}{In terms of motives}\dotfill \pageref*{in_terms_of_motives} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \ldots{} \hypertarget{relation_to_tqft}{}\subsection*{{Relation to TQFT}}\label{relation_to_tqft} Gromov-Witten invariants may be understood (and have originally been found) as arising from a particular [[TQFT]], or actually a [[TCFT]], called the [[A-model]]. For a useful exposition of this see (\hyperlink{Tolland}{Tolland}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[stable map]] \item [[orbifold cohomology]] \item [[quantum sheaf cohomology]] \item [[Donaldson theory]] \item [[A-model]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{expositions}{}\subsubsection*{{Expositions}}\label{expositions} here are some seminar notes: \begin{itemize}% \item [[basic ideas of moduli stacks of curves and Gromov-Witten theory]] \end{itemize} Some introductory notes: \begin{itemize}% \item Simon Rose, \emph{Introduction to Gromov-Witten theory}, \href{http://arxiv.org/abs/1407.1260v1}{arXiv}. \end{itemize} And this introductory bit on the [[moduli stack]] of [[elliptic curve]]s: \begin{itemize}% \item [[A Survey of Elliptic Cohomology - elliptic curves]]. \end{itemize} An exposition of GW theory as a [[TCFT]] is at \begin{itemize}% \item [[AJ Tolland]], \emph{Gromov-Witten Invariants and Topological Field Theory} (\href{http://sbseminar.wordpress.com/2008/12/11/gromov-witten-invariants-and-topological-field-theory}{blog}) \end{itemize} The origin of Gromov-Witten theory in and relation to [[string theory]] and other [[physics]] motivation is recalled and surveyed in \begin{itemize}% \item Daniel Grunberg, \emph{Gromov-Witten Theory and Threshold Corrections} (\href{http://arxiv.org/abs/hep-th/0605087}{arXiv:hep-th/0605087}) \end{itemize} \hypertarget{via_geometric_quantization}{}\subsubsection*{{Via geometric quantization}}\label{via_geometric_quantization} Discussion in the context of [[geometric quantization]] is in \begin{itemize}% \item Emily Clader, Nathan Priddis, Mark Shoemaker, \emph{Geometric Quantization with Applications to Gromov-Witten Theory} (\href{http://arxiv.org/abs/1309.1150}{arXiv:1309.1150}) \end{itemize} \hypertarget{as_a_tcft}{}\subsubsection*{{As a TCFT}}\label{as_a_tcft} \begin{itemize}% \item [[Kevin Costello]], \emph{The Gromov-Witten potential associated to a TCFT} (\href{http://arxiv.org/abs/math/0509264}{arXiv:0509264}) \end{itemize} See also the references at [[A-model]]. \hypertarget{general}{}\subsubsection*{{General}}\label{general} A discussion by quantization of quadratic Hamiltonians is in \begin{itemize}% \item [[Alexander Givental]], \emph{Gromov-Witten invariants and quantization of quadratic Hamiltonians} (\href{http://math.berkeley.edu/~giventh/papers/gwi.pdf}{pdf}) \item M. Kontsevich, Yu. Manin, \emph{Gromov-Witten classes, quantum cohomology, and enumerative geometry}, Comm. Math. Phys. 164 (1994), no. 3, 525--562 (\href{http://projecteuclid.org/euclid.cmp/1104270948}{euclid}). \item [[Yuri Manin]], \emph{Frobenius manifolds, quantum cohomology and moduli spaces}, Amer. Math. Soc., Providence, RI, 1999, \item W. Fulton, R. Pandharipande, \emph{Notes on stable maps and quantum cohomology}, in: Algebraic Geometry- Santa uz 1995 ed. Kollar, Lazersfeld, Morrison. Proc. Symp. Pure Math. 62, 45--96 (1997) \item J Robbin, D A Salamon, \emph{A construction of the Deligne-Mumford orbifold}, J. Eur. Math. Soc. (JEMS) 8 (2006), no. 4, 611--699 (\href{http://arxiv.org/abs/math/0407090}{arxiv}; \href{http://www.ems-ph.org/journals/show_pdf.php?issn=1435-9855&vol=8&iss=4&rank=3}{pdf at JEMS}); corrigendum J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 901--905 (\href{http://www.ems-ph.org/journals/show_pdf.php?issn=1435-9855&vol=9&iss=4&rank=11}{pdf at JEMS}). \item J Robbin, Y Ruan, D A Salamon, \emph{The moduli space of regular stable maps}, Math. Z. 259 (2008), no. 3, 525--574 (\href{http://dx.doi.org/10.1007/s00209-007-0237-x}{doi}). \item Martin A. Guest, \emph{From quantum cohomology to integrable systems}, Oxford Graduate Texts in Mathematics, 15. Oxford University Press, Oxford, 2008. xxx+305 pp. \item Joachim Kock, Israel Vainsencher, \emph{An invitation to quantum cohomology. Kontsevich's formula for rational plane curves}, Progress in Mathematics, 249. Birkh\"a{}user Boston, Inc., Boston, MA, 2007. xiv+159 pp. \item Dusa McDuff, Dietmar Salamon, \emph{Introduction to symplectic topology}, 2 ed. Oxford Mathematical Monographs 1998. x+486 pp. \item Sheldon Katz, \emph{Enumerative geometry and string theory}, Student Math. Library \textbf{32}. IAS/Park City AMS \& IAS 2006. xiv+206 pp. \item Eleny-Nicoleta Ionel, Thomas H. Parker, \emph{Relative Gromov-Witten invariants}, Ann. of Math. (2) 157 (2003), no. 1, 45--96 (\href{http://dx.doi.org/10.4007/annals.2003.157.45}{doi}). \item [[Edward Frenkel]], [[Constantin Teleman]], [[AJ Tolland]], \emph{Gromov-Witten Gauge Theory I} (\href{http://arxiv.org/abs/0904.4834}{arXiv:0904.4834}) \item [[Constantin Teleman]], \emph{The structure of 2D semi-simple field theories} (\href{http://arxiv.org/abs/0712.0160}{arXiv:0712.0160}) \item Oliver Fabert, \emph{Floer theory, Frobenius manifolds and integrable systems}, (\href{http://arxiv.org/abs/1206.1564}{arxiv/1206.1564}) \end{itemize} A generalization is discussed in \begin{itemize}% \item [[Edward Frenkel]], A. Losev, [[Nikita Nekrasov]], \emph{Instantons beyond topological theory I} (\href{http://arxiv.org/abs/hep-th/0610149}{arXiv:hep-th/0610149}) \item [[Edward Frenkel]], A. Losev, [[Nikita Nekrasov]], \emph{Instantons beyond topological theory II} (\href{http://arxiv.org/abs/0803.3302}{arXiv:hep-th/0610149}) \end{itemize} Expositions and summaries of this are in \begin{itemize}% \item [[Edward Frenkel]], A. Losev, [[Nikita Nekrasov]], \emph{Notes on instantons in topological field theory and beyond} (\href{http://arxiv.org/abs/hep-th/0702137}{arXiv:hep-th/0702137}) \item [[Jacques Distler]], \emph{Localized} (2006) (\href{Localized}{blog}) \end{itemize} \hypertarget{in_higher_differential_geometry__on_orbifolds}{}\subsubsection*{{In higher differential geometry / on orbifolds}}\label{in_higher_differential_geometry__on_orbifolds} GW theory of [[orbifolds]] (hence in [[higher differential geometry]]) has been introduced in \begin{itemize}% \item Weimin Chen, [[Yongbin Ruan]], \emph{Orbifold Gromov-Witten Theory}, in \emph{Orbifolds in mathematics and physics} (Madison, WI, 2001), 25--85, Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2002 (\href{http://arxiv.org/abs/math/0103156}{arXiv:math/0103156}) \end{itemize} A review with further pointers is in \begin{itemize}% \item Dan Abramovich, \emph{Lectures on Gromov-Witten invariants of orbifolds} (\href{http://arxiv.org/abs/math/0512372}{arXiv:math/0512372}) \end{itemize} \hypertarget{in_terms_of_motives}{}\subsubsection*{{In terms of motives}}\label{in_terms_of_motives} That the [[path integral as a pull-push transform|pull-push quantization]] of Gromov-Witten theory is naturally understood as a ``[[motivic quantization]]'' in terms of [[Chow motives]] of [[Deligne-Mumford stacks]] was suggested in \begin{itemize}% \item [[Kai Behrend]], [[Yuri Manin]], \emph{Stacks of Stable Maps and Gromov-Witten Invariants} (\href{http://arxiv.org/abs/alg-geom/9506023}{arXiv:alg-geom/9506023}) \end{itemize} Further investigation of these stacky Chow motives then appears in \begin{itemize}% \item [[Bertrand Toën]], \emph{On motives for Deligne-Mumford stacks}, International Mathematics Research Notices 2000, 17 (2000) 909-928 (\href{http://arxiv.org/abs/math/0006160}{arXiv:math/0006160}, \href{http://hal.archives-ouvertes.fr/hal-00773027}{web}, \href{http://hal.archives-ouvertes.fr/docs/00/77/30/27/PDF/motdm.pdf}{pdf}) \end{itemize} \begin{itemize}% \item Utsav Choudhury, \emph{Motives of Deligne-Mumford Stacks} (\href{http://arxiv.org/abs/1109.5288}{arXiv:1109.5288}) \end{itemize} [[!redirects Gromov-Witten invariant]] [[!redirects Gromov-Witten invariants]] [[!redirects Gromov–Witten invariant]] [[!redirects Gromov–Witten invariants]] [[!redirects Gromov--Witten invariant]] [[!redirects Gromov--Witten invariants]] [[!redirects Gromov-Witten theory]] [[!redirects Gromov–Witten theory]] [[!redirects Gromov--Witten theory]] \end{document}