\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Grothendieck's Galois theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{preliminaries}{Preliminaries}\dotfill \pageref*{preliminaries} \linebreak \noindent\hyperlink{grothendiecks_axioms}{Grothendieck's axioms}\dotfill \pageref*{grothendiecks_axioms} \linebreak \noindent\hyperlink{the_classical_case_of_fields}{The classical case of fields}\dotfill \pageref*{the_classical_case_of_fields} \linebreak \noindent\hyperlink{galois_theorem_for_locales_and_topoi}{Galois theorem for locales and topoi}\dotfill \pageref*{galois_theorem_for_locales_and_topoi} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For a sufficiently nice [[topological space]], the [[fundamental group]] at a point can be reconstructed as a group of [[deck transformation]]s of the [[universal covering space]], which is the same as the [[automorphism]]s of the [[fiber]] over that point of the projection map. The deck transformations are [[monodromies]] induced by loops at the base point. The functor which assigns to a point the fiber functor over it, generalizes to fiber functors in the [[Tannaka duality|Tannakian formalism]] of Grothendieck which defines in more general setups the [[fundamental groupoid]] as the group of automorphisms of the appropriate fiber functor. See also [[fundamental group of a topos]]. \begin{description} \item[Grothendieck's [[Galois theory]] was constructed in order to define for [[scheme]]s an analogue of the familiar correspondence] [[covering space]]s of $X$ : $\pi_1(X)$[[action|-sets]] \end{description} for a [[locally path-connected space|locally path connected]], [[semi-locally simply connected space|semilocally simply connected]] [[topological space]] $X$. The objects on the left are not difficult to define for schemes (at least naively -- one really needs trivialisations over \'e{}tale [[coverage|covers]]), but it may not be entirely immediate what the [[fundamental group]] defined in terms of loops should be. The reason Galois's name is attached to this theory is that in the case of the scheme $Spec(k)$, the objects corresponding to the covering spaces are simply [[field extension]]s $Spec(k')$. The fundamental group of schemes defined in this way is the [[algebraic fundamental group]], and is a [[profinite group]]. \hypertarget{generalizations}{}\subsubsection*{{Generalizations}}\label{generalizations} The basic idea of Grothendieck's Galois theory may be extended to objects in an [[topos]] -- leading to a notion of [[fundamental group of a topos]] -- and then further to objects in any [[(∞,1)-topos]]. For more on this see [[homotopy group of an ∞-stack]]. \hypertarget{details}{}\subsection*{{Details}}\label{details} \hypertarget{preliminaries}{}\subsubsection*{{Preliminaries}}\label{preliminaries} \begin{udefn} Given an arrow $f:x \to y$ in a category $C$ the \emph{category of arrows compatible with $f$}, denoted $Comp(f)$ is the full [[subcategory]] of the [[undercategory]] $x \downarrow C$ on the arrows that [[coequalizer|coequalize]] the same pairs $g,h:w\rightrightarrows x$ that $f$ does. \end{udefn} \begin{udefn} An arrow $f:x\to y$ in a category $C$ is a \emph{[[strict epimorphism]]} if it is [[initial object|initial]] in $Comp(f)$. \end{udefn} It is not obvious, but a strict epimorphism is an epimorphism. \hypertarget{grothendiecks_axioms}{}\subsubsection*{{Grothendieck's axioms}}\label{grothendiecks_axioms} In what follows, Let $C$ be a [[category]] and $F:C \to Set$ a [[functor]]. The axioms presented here are as in J. P. Murre, \emph{Lectures on an introduction to Grothendieck's theory of the fundamental group}, Tata Inst. of Fund. Res. Lectures on Mathematics 40, Bombay, 1967. iv+176+iv pp. and copied also in \begin{itemize}% \item [[Eduardo Dubuc]], C. S. de la Vega \emph{On the Galois theory of Grothendieck}, Bol. Acad. Nac. Cienc. (Cordoba) \textbf{65} (2000) 111--136. \href{http://arxiv.org/abs/math.CT/0009145}{arXiv} \end{itemize} Some terminology: $X\in C$ is called \emph{finite} if $F(X)$ is a finite [[set]]. Let $\int_F C$ denote the [[category of elements]] of $F$, in which an object $(X,a)$ is called finite if $X$ is finite. \begin{itemize}% \item \textbf{G0)} The full subcategory of $\int_F C$ on the finite objects is [[cofinal subcategory|cofinal]]. \item \textbf{G1)} $C$ has all finite [[limit]]s \item \textbf{G2)} $C$ has an [[initial object]], finite [[coproduct]]s and [[quotient object|quotients]] by finite [[group]]s \item \textbf{G3)} Given $f:x\to z$ in $C$ there is a factorisation $x \stackrel{e}{\to} y \stackrel{i}{\to} z$ where $e$ is a strict epimorphism and $i$ is a mono. Also, $y$ is assumed to be a [[direct sum]]mand of $z$. \item \textbf{G4)} $F$ preserves finite limits \item \textbf{G5)} $F$ preserves initial object, finite sums, quotients by finite group actions and sends strict epimorphisms to surjections \item \textbf{G6)} $F$ reflects isomorphisms \end{itemize} \vspace{.5em} \hrule \vspace{.5em} The functor $F$ is called the \emph{fibre functor}, and the pair $(C,F)$ is sometimes called a \emph{Galois category}. It follows from the axioms that $F$ is a [[pro-representable functor]]. The [[automorphism group]] of the [[pro-object]] $P$ representing $F$ is (should be. I'm not familiar enough with pro-objects) a [[profinite group]] $\pi$. This acts on $F(X) = [P,-]$ by precomposition (talking out of my depth here -- it's getting a bit vague) and so $F$ lifts to a functor to $\pi-Set$, and Grothendieck's result is that this functor is an [[equivalence of categories]]. There are several modifications one can make the above. In the case that $C$ is the category of covering spaces of a nice enough space, the functor $F$ is [[representable functor|representable]] by the [[universal covering space]], and so there is a `representable' version of the above, not needing to utilise profinite groups. One can also consider just the connected-objects version, and end up with an equivalence to the category of \emph{[[transitive action|transitive]]} $\pi$-sets. \hypertarget{the_classical_case_of_fields}{}\subsection*{{The classical case of fields}}\label{the_classical_case_of_fields} Even for the classical case of the inclusion of [[field]]s, Grothendieck's Galois theorem gives more general statement than the previously known. This is the Grothendieck's version of the Galois correspondence theorem for fields: Let $K \subset L$ be a finite dimensional [[Galois extension]] of fields. Let $Gal[L : K]$ denote the group of $K$-automorphisms of $L$ and $Gal [L : K]-finSet$ the category of finite $Gal[L : K]$-sets. By $SplitfinAlg_K(L)$ denote the finite dimensional $K$-algebras which are split over $L$; here $L$ itself is an object. Consider the [[representable functor]] $h_L = Hom_K(-,L):SplitfinAlg_K(L)\to Set$. It takes values in the [[subcategory]] of finite sets and it comes with a canonical $Gal[L : K]$-action. In other words, this functor factors through $Gal [L : K]-finSet$. Moreover, the corresponding functor \begin{displaymath} SplitfinAlg_K(L)\to Gal [L : K]-finSet \end{displaymath} is an [[equivalence of categories]]. There is an infinitary version as well, generalizing the classical Galois theorem on infinitary Galois extensions. Thus let $K\subset L$ be an arbitrary Galois extension. Now $Gal[L:K]$ denotes the profinite Galois group and $Gal[L:K]-profinSpace$ the category or profinite $Gal[L:K]$-spaces. $SplitAlg_K(L)$ denotes the category of $K$-algebras split over $L$ (possible infinite-dimensional). Then there is a canonical anti-equivalence of categories \begin{displaymath} SplitAlg_K(L)\to Gal [L : K]-profinSpace \end{displaymath} (factorizing a profinite-space version of the representable functor $Hom_K(-,L)$). A special case of this is the following: the category of [[étale scheme|étale k-schemes]] reps. [[étale group scheme|étale group schemes]] for a field $k$ is equivalent to the category of sets equipped with an [[action]] of the [[absolute Galois group]] reps. to the category of [[Galois module|Galois modules]] of the absolute Galois group. \hypertarget{galois_theorem_for_locales_and_topoi}{}\subsection*{{Galois theorem for locales and topoi}}\label{galois_theorem_for_locales_and_topoi} Let $E$ be a Grothendieck topos. Then there exist an open [[localic groupoid]] $G$ such that $E$ is equivalent to the category of \'e{}tale presheaves over $G$. One of the classical references is \begin{itemize}% \item J. P. Murre, \emph{Lectures on an introduction to Grothendieck's theory of the fundamental group}, Tata Inst. of Fund. Res. Lectures on Mathematics \emph{40}, Bombay, 1967. iv+176+iv pp. \end{itemize} This is a variant of the theorem in the setting of [[locales]] from \begin{itemize}% \item [[Andre Joyal]], M. Tierney, \emph{An extension of the Galois theory of Grothendieck}, Mem. Amer. Math. Soc. 51 (1984), no. 309, vii+71 pp. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original development of the theory by [[Grothendieck]] is in [[SGA1]]. \begin{itemize}% \item [[Alexander Grothendieck]], (1971), S.G.A.1 - Revetements \'e{}tales et groupe fondamental, Lecture Notes in Maths. 224, Springer-Verlag. \end{itemize} A more recent treatment can be found in \begin{itemize}% \item [[Eduardo Dubuc]], C. S. de la Vega, \emph{On the Galois theory of Grothendieck}, Bol. Acad. Nac. Cienc. (Cordoba) \textbf{65} (2000) 111--136. \href{http://arxiv.org/abs/math.CT/0009145}{arXiv:math.CT/0009145} \end{itemize} and more related categorical and topos theoretic aspects in \begin{itemize}% \item [[Eduardo Dubuc]], \emph{Localic Galois theory}, Adv. Math. \textbf{175}:1 (2003), 144--167 ; \emph{On the representation theory of Galois and atomic topoi}, JPAA \textbf{186}:3 (2004) 233--275 \end{itemize} A very approachable account is given in \begin{itemize}% \item Marco Ant\`o{}nio Delgado Robalo, \emph{Galois theory towards dessins d'enfants}, masters thesis, Lisboa 2009, \href{https://dspace.ist.utl.pt/bitstream/2295/575330/1/dissertacao.pdf}{pdf} \end{itemize} (This has the advantage of looking towards Grothendieck's [[children's drawing|dessins d'enfants]].) Basic intuition is explained in \begin{itemize}% \item Pierre Cartier, \emph{A mad day's work: from Grothendieck to Connes and Kontsevich The evolution of concepts of space and symmetry}, Bull. Amer. Math. Soc. \textbf{38} (2001), 389-408, \href{http://www.ams.org/bull/2001-38-04/S0273-0979-01-00913-2/S0273-0979-01-00913-2.pdf}{pdf} \end{itemize} The construction for general [[topos]]es is described in section 8.4 of \begin{itemize}% \item [[Peter Johnstone]], \emph{Topos theory} , Academic Press (1977) \end{itemize} and, a current state of the art description is in \begin{itemize}% \item [[Marta Bunge]], \emph{Galois groupoids and covering morphisms in topos theory}, Galois theory, Hopf algebras, and semiabelian categories, 131--161, Fields Inst. Commun. \textbf{43}, Amer. Math. Soc., Providence, RI, 2004, \href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.7071}{links}. \end{itemize} A modern approach from classical via Grothendieck up to [[categorical Galois theory]] based on precategories and adjunctions is in \begin{itemize}% \item [[Francis Borceux]], [[George Janelidze]], \emph{[[Galois theories]]}, Cambridge Studies in Adv. Math. \textbf{72}, 2001. xiv+341 pp. \end{itemize} The application of a general Tannakian theorem of Saavaedra Rivano, as corrected by Deligne, to the ``[[differential Galois theory]]'' for differential instead of algebraic equations is in the last chapter of Deligne's [[Catégories Tannakiennes]]. \begin{itemize}% \item [[George Janelidze]], Dietmar Schumacher, [[Ross Street]], \emph{Galois theory in variable categories}, Applied Categorical Structures \textbf{1}, Number 1, 103-110, DOI: \item Federico G. Lastaria, \emph{On separable algebras in Grothendieck Galois theory}, Le Matematiche 51:3, 1996, \href{http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/464/0}{link} \end{itemize} [[!redirects Grothendieck Galois theory]] [[!redirects Grothendieck's Galois theory]] [[!redirects Grothendieck-Galois theory]] [[!redirects Grothendieck?Galois theory]] [[!redirects Grothendieck--Galois theory]] [[!redirects Galois category]] category: Galois theory \end{document}