\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Grothendieck context} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{duality}{}\paragraph*{{Duality}}\label{duality} [[!include duality - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{QuasicoeherntSheavesOnSchemes}{Quasicoherent sheaves on schemes}\dotfill \pageref*{QuasicoeherntSheavesOnSchemes} \linebreak \noindent\hyperlink{quasicoherent_sheaves_in_geometry}{Quasicoherent sheaves in $E_\infty$-geometry}\dotfill \pageref*{quasicoherent_sheaves_in_geometry} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Grothendieck context} is a pair of two [[symmetric monoidal categories]] $(\mathcal{X}, \otimes_X, 1_{X})$, $(\mathcal{Y}, \otimes_Y, 1_Y)$ which are connected by an [[adjoint triple]] of [[functors]] such that the leftmost one is a [[closed monoidal functor]]. This is the variant/special case of the [[yoga of six operations]] with two [[adjoint pairs]] $(f_! \dashv f^!)$ and $(f^\ast \dashv f_\ast)$ for $f_! \simeq f_\ast$. \begin{displaymath} f^\ast \dashv (f_\ast = f_!) \dashv f^! \;\colon\; \mathcal{X} \; \itexarray{ \overset{f^\ast}{\longleftarrow} \\ \overset{f_\ast = f_! }{\longrightarrow} \\ \overset{f^!}{\longleftarrow} } \; \mathcal{Y} \,. \end{displaymath} (The other specialization of the [[six operations]] where $f^\ast \simeq f^!$ is called the \emph{[[Wirthmüller context]]}). The existence of the (derived) right adjoint $f^!$ to $f_\ast$ is what is called \emph{[[Grothendieck duality]]}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{QuasicoeherntSheavesOnSchemes}{}\subsubsection*{{Quasicoherent sheaves on schemes}}\label{QuasicoeherntSheavesOnSchemes} A [[homomorphism]] of [[schemes]] $f \;\colon\; X \longrightarrow Y$ induces an [[inverse image]] $\dashv$ [[direct image]] [[adjunction]] on the [[derived categories]] $QCoh(-)$ of [[quasicoherent sheaves]] \begin{displaymath} (f^\ast \dashv f_\ast) \;\colon\; QCoh(X) \underoverset \overset{f^\ast}{\longleftarrow} \overset{f_\ast}{\longrightarrow} {\bot} QCoh(Y) \,. \end{displaymath} (all [[derived functors]]) If $f$ is a [[proper morphism of schemes]] then under mild further conditions there is a further [[right adjoint]] $f^!$ \begin{displaymath} (f^\ast \dashv f_\ast \dashv f^!) \;\colon\; QCoh(X) \; \itexarray{ \overset{f^\ast}{\longleftarrow} \\ \overset{f_\ast}{\longrightarrow} \\ \overset{f^!}{\longleftarrow} } \; QCoh(Y) \,. \end{displaymath} This is originally due to [[Grothendieck]], whence the name. Refined accounts are in (\hyperlink{Deligne66}{Deligne 66}, \href{Verdier68}{Verdier 68}, \hyperlink{Neeman96}{Neeman 96}). \hypertarget{quasicoherent_sheaves_in_geometry}{}\subsubsection*{{Quasicoherent sheaves in $E_\infty$-geometry}}\label{quasicoherent_sheaves_in_geometry} Generalization of the pull-push [[adjoint triple]] to [[E-∞ geometry]] is in (\hyperlink{LurieQC}{LurieQC, prop. 2.5.12}) and the [[projection formula]] for this is in (\hyperlink{LurieProper}{LurieProp, remark 1.3.14}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Wirthmüller context]] \item [[Verdier-Grothendieck context]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original construction for \hyperlink{QuasicoeherntSheavesOnSchemes}{quasicoherent sheaves on schemes} is due to [[Alexander Grothendieck]], whence the name ``Grothendieck context''. Further stream-lined accounts then appeared in \begin{itemize}% \item [[Pierre Deligne]], \emph{Cohomology \`a{} support propre en construction du foncteur $f^!$}, Appendix to: \emph{Residues and Duality}, Lecture Notes in Math., vol. 20, Springer-Verlag, Heidelberg, 1966, pp. 404\{421. MR 36:5145 \end{itemize} \begin{itemize}% \item [[Jean-Louis Verdier]], \emph{Base change for twisted inverse images of coherent sheaves}, Collection: Algebraic Geometry (Internat. Colloq.), Tata Inst. Fund. Res., Bombay, 1968, pp. 393-408. MR 43:227 \end{itemize} Further refinement and highlighting of the close relation to the \href{Brown+representability+theorem#CategoricalBrownRepresentability}{categorical Brown representability theorem} is in \begin{itemize}% \item [[Amnon Neeman]], \emph{The Grothendieck duality theorem via Bousfield's techniques and Brown representability}, J. Amer. Math. Soc. 9 (1996), 205-236 (\href{http://www.ams.org/journals/jams/1996-9-01/S0894-0347-96-00174-9/}{web}) \end{itemize} Discussion of [[integral transforms]] in Grothendieck contexts is in \begin{itemize}% \item [[Alexander Polishchuk]], \emph{Kernel algebras and generalized Fourier-Mukai transforms} (\href{http://arxiv.org/abs/0810.1542}{arXiv:0810.1542}) \end{itemize} Generalization of the pull-push [[adjoint triple]] to [[E-∞ geometry]] is in \begin{itemize}% \item [[Jacob Lurie]], section 2.5 of \emph{[[Quasi-Coherent Sheaves and Tannaka Duality Theorems]]} \end{itemize} and the [[projection formula]] for this triple appears as remark 1.3.14 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Proper Morphisms, Completions, and the Grothendieck Existence Theorem]]} \end{itemize} A clear discussion of axioms of [[six operations]], their specialization to Grothendieck context and [[Wirthmüller context]] and their consequences is in \begin{itemize}% \item H. Fausk, P. Hu, [[Peter May]], \emph{Isomorphisms between left and right adjoints}, Theory and Applications of Categories , Vol. 11, 2003, No. 4, pp 107-131. (\href{http://www.tac.mta.ca/tac/volumes/11/4/11-04abs.html}{TAC}, \href{http://www.math.uiuc.edu/K-theory/0573/FormalFeb16.pdf}{pdf}) \end{itemize} \begin{itemize}% \item [[Paul Balmer]], [[Ivo Dell'Ambrogio]], [[Beren Sanders]], \emph{Grothendieck-Neeman duality and the Wirthm\"u{}ller isomorphism}, \href{http://arxiv.org/abs/1501.01999}{arXiv:1501.01999}. \end{itemize} [[!redirects Grothendieck contexts]] \end{document}