\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Grothendieck duality} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{duality}{}\paragraph*{{Duality}}\label{duality} [[!include duality - contents]] \hypertarget{grothendieck_duality}{}\section*{{Grothendieck duality}}\label{grothendieck_duality} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{dualizing_complexes}{Dualizing Complexes}\dotfill \pageref*{dualizing_complexes} \linebreak \noindent\hyperlink{rigid_dualizing_complexes}{Rigid Dualizing Complexes}\dotfill \pageref*{rigid_dualizing_complexes} \linebreak \noindent\hyperlink{noncommutative_grothendieck_duality}{Noncommutative Grothendieck Duality}\dotfill \pageref*{noncommutative_grothendieck_duality} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[homomorphism]] $f$ of [[schemes]], one says that it satisfies \emph{Grothendieck duality} if the ([[derived functor|derived]]) [[direct image]] functor $f_\ast$ on [[quasicoherent sheaves]] has a (derived) [[right adjoint]] $f^!$. This is [[Verdier duality]] in a ``[[Grothendieck context]]'' of [[six operations]]. Grothendieck duality is intimately connected to \textbf{dualizing complexes}. This was the original approach of Grothendieck in the book \emph{Residues and Duality}. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} Suppose $f\colon X \to Y$ is a [[quasi-compact map|quasi-compact]] and [[quasi-separated map|quasi-separated]] [[morphism]] of [[schemes]]; then the [[triangulated functor]] $\mathbf{R}f_*\colon D_{qc}(X)\to D(Y)$ has a bounded below [[right adjoint]]. In other words, $\mathbf{R}Hom_X(\mathcal{F}, f^\times \mathcal{G})\stackrel{\sim}{\to} \mathbf{R}Hom_Y(\mathbf{R}f_*\mathcal{F}, \mathcal{G})$ is a [[natural isomorphism]]. \hypertarget{dualizing_complexes}{}\subsection*{{Dualizing Complexes}}\label{dualizing_complexes} Let $X$ be a noetherian scheme. A dualizing complex on $X$ is a complex $\mathcal{R} \in \mathsf{D}(\mathsf{Mod} X)$ that has these three properties: \begin{itemize}% \item $\mathcal{R} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{c}}(\mathsf{Mod} X)$ (i.e. $\mathcal{R}$ has bounded coherent cohomology sheaves). \item $\mathcal{R}$ has finite injective dimension. \item The canonical morphism $\mathcal{O}_X \to \mathrm{R} \mathcal{Hom}_{X}(\mathcal{R}, \mathcal{R})$ in $\mathsf{D}(\mathsf{Mod} X)$ is an isomorphism. \end{itemize} The following two structures are basically equivalent to each other, for a given category of noetherian schemes $\mathsf{S}$: \begin{itemize}% \item A psudofunctor $f \mapsto f^!$, called the \textbf{twisted inverse image}, that assigns a functor \begin{displaymath} f^! : \mathsf{D}^{+}_{\mathrm{c}}(\mathsf{Mod} Y) \to \mathsf{D}^{+}_{\mathrm{c}}(\mathsf{Mod} X) \end{displaymath} to each map of schemes $f : X \to Y$ in $\mathsf{S}$, and has several known properties. \item A dualizing complex $\mathcal{R}_X$ for every scheme $X$ in the category $\mathsf{S}$, with several known functorial properties. \end{itemize} The relation between these two structures is demonstrated in the following Example. \textbf{Example}. Suppose $K$ is a regular finite dimensional noetherian ring, and let $\mathsf{S}$ be the category of finite type $K$-schemes. Given a twisted inverse image psudofunctor $f \mapsto f^!$, we define dualizing complexes as follows: on any $X \in \mathsf{S}$ with structural morphism $\pi_X : X \to \operatorname{Spec} K$, we let $\mathcal{R}_X := \pi_X^!(K)$. Conversely, suppose we are given a dualizing complex $\mathcal{R}_X$ on each $X \in \mathsf{S}$. This gives rise to a duality (contrvariant equivalence) $D_X$ of $\mathsf{D}^{}_{\mathrm{c}}(\mathsf{Mod} X)$, exchanging $\mathsf{D}^{+}_{\mathrm{c}}(\mathsf{Mod} X)$ with $\mathsf{D}^{-}_{\mathrm{c}}(\mathsf{Mod} X)$, with formula \begin{displaymath} D_X(\mathcal{M}) := \mathrm{R} \mathcal{Hom}_{X}(\mathcal{M}, \mathcal{R}_X) . \end{displaymath} We then define \begin{displaymath} f^!(\mathcal{M}) := D_Y( \mathrm{L} f^* ( D_X(\mathcal{M}) )) . \end{displaymath} \hypertarget{rigid_dualizing_complexes}{}\subsubsection*{{Rigid Dualizing Complexes}}\label{rigid_dualizing_complexes} The notion of \emph{rigid dualizing complex} was introduced by Van den Bergh in 1997, for a \emph{noncommutative ring} $A$ over a base field $K$. Yekutieli and Zhang have shown how to define a rigid dualizing complex $R_{A/K}$, when $K$ is a regular finite dimensional noetherian ring, and $A$ is an essentially finite type $K$-ring (both commutative). A refined variant of the rigid dualizing complex, namely the \emph{rigid residue complex} $\mathcal{K}_{A/K}$, was shown to exist, and to be unique (up to a unique isomorphism of complexes). These rigid residue complexes have all the good functorial properties alluded to above, and even more. Specifically, they are covariant for essentially etale ring homomorphisms $A \to A'$ (via the rigid localization homomorphism), and contravariant (as graded modules) for all ring homomorphisms $A \to B$ (via the ind-rigid trace homomorphism). The rigid localization homomorphism permits the gluing of the rigid residue complexes $\mathcal{K}_{A/K}$ on affine open sets $U = \operatorname{Spec} A$ of a scheme $X$ into a rigid residue complex $\mathcal{K}_{X/K}$ on $X$. In this way one obtains a collection of dualizing complexes $\mathcal{K}_{X/K}$ on all essentially finite type $K$-schemes $X$, consisting of quasi-coherent injective sheaves. For any map of scheme $f : X \to Y$ there is the ind-rigid trace homomoprhism \begin{displaymath} \mathrm{Tr}_f : f_*(\mathcal{K}_{Y/K}) \to \mathcal{K}_{X/K} , \end{displaymath} which is a homomorphism of graded quasi-coherent sheaves. The \emph{Residue Theorem} says that when $f$ is proper, $\mathrm{Tr}_f$ is a homomorphism of complexes. The \emph{Duality Theorem} says that when $f$ is proper, $\mathrm{Tr}_f$ induces global duality. As explained above, there is a corresponding functor $f^!$; and the Duality Theorem says that $\mathrm{R} f_*$ and $f^!$ are adjoint functors. Moreover, the rigidity method works also for finite type \textbf{Deligne-Mumford stacks} over $K$. The key observation is that the rigid residue complexes are complexes of quasi-coherent sheaves in the etale site over $K$. Details of this extension of the theory are still under preparation. \hypertarget{noncommutative_grothendieck_duality}{}\subsection*{{Noncommutative Grothendieck Duality}}\label{noncommutative_grothendieck_duality} (To be added later) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[six operations]] \item [[Poincare duality]], [[Verdier duality]] \item [[Fourier-Mukai transform]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Robin Hartshorne]], \emph{Residues and duality} (Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne.) Springer LNM 20, 1966 \href{http://www.ams.org/mathscinet-getitem?mr=222093}{MR222093} \item Domingo Toledo, Yue Lin L. Tong, \emph{Duality and intersection theory in complex manifolds. I.}, Math. Ann. \textbf{237} (1978), no. 1, 41--77, \href{http://www.ams.org/mathscinet-getitem?mr=506654}{MR80d:32008}, \href{http://dx.doi.org/10.1007/BF01351557}{doi} \item Mitya Boyarchenko, [[Vladimir Drinfeld]], \emph{A duality formalism in the spirit of Grothendieck and Verdier}, \href{http://arxiv.org/abs/1108.6020}{arxiv/1108.6020} \item Z. Mebkhout, \emph{Le formalisme des six op\'e{}rations de Grothendieck pour les $\mathcal{D}_X$-modules coh\'e{}rents}, Travaux en Cours \textbf{35}. Hermann, Paris, 1989. x+254 pp. \href{http://www.ams.org/mathscinet-getitem?mr=1008245}{MR90m:32026} \item [[Amnon Neeman]], \emph{Derived categories and Grothendieck duality}, in: Triangulated categories, 290--350, London Math. Soc. Lecture Note Ser. \textbf{375}, Cambridge Univ. Press 2010 \item Amnon Neeman, \emph{The Grothendieck duality theorem via Bousfield's techniques and Brown representability}, J. Amer. Math. Soc. \textbf{9} (1996), no. 1, 205--236, \href{http://www.ams.org/mathscinet-getitem?mr=1308405}{MR96c:18006}, \href{http://dx.doi.org/10.1090/S0894-0347-96-00174-9}{doi} \item Brian Conrad, \emph{Grothendieck duality and base change}, Springer Lec. Notes Math. \textbf{1750} (2000) vi+296 pp. \item [[Joseph Lipman]], \emph{Notes on derived functors and Grothendieck duality}, in: Foundations of Grothendieck duality for diagrams of schemes, 1--259, Lecture Notes in Math. \textbf{1960}, Springer 2009, \href{http://dx.doi.org/10.1007/978-3-540-85420-3}{doi}, \href{http://www.math.purdue.edu/~lipman/Duality.pdf}{draft pdf} \item J. Lipman, \emph{Grothendieck operations and coherence in categories}, conference slides, 2009, \href{http://www.math.purdue.edu/~lipman/Madrid.pdf}{pdf} \item Alonso Tarr\'i{}o, Leovigildo; Jerem\'i{}as L\'o{}pez, Ana; Joseph Lipman, \emph{Studies in duality on Noetherian formal schemes and non-Noetherian ordinary schemes}, Contemporary Mathematics \textbf{244} Amer. Math. Soc. 1999. x+126L. \href{http://www.ams.org/mathscinet-getitem?mr=1716706}{MR2000h:14017}; \emph{Duality and flat base change on formal schemes}, Contemporary Math. \textbf{244} (1999), pp. 3--90. \item J. Ayoub, \emph{Les six op\'e{}rations de Grothendieck et le formalisme des cycles \'e{}vanescents dans le monde motivique. I.}, Ast\'e{}risque No. 314 (2007), x+466 pp. (2008) \href{http://www.ams.org/mathscinet-getitem?mr=2423375}{MR2009h:14032}; \emph{II.} Ast\'e{}risque No. 315 (2007), vi+364 pp. (2008) \href{http://www.ams.org/mathscinet-getitem?mr=2438151}{MR2009m:14007}; also a file at K-theory archive \href{http://www.math.uiuc.edu/K-theory/0761/THESE.pdf}{THESE.pdf} \item [[Amnon Yekutieli]], James Zhang, Rings with Auslander Dualizing Complexes, J. Algebra 213 (1999), 1-51; \emph{Rigid dualizing complexes over commutative rings}, Algebr. Represent. Theory \textbf{12} (2009), no. 1, 19--52, \href{http://dx.doi.org/10.1007/s10468-008-9102-9}{doi}; Dualizing Complexes and Perverse Sheaves on Noncommutative Ringed Schemes, Selecta Math. 12 (2006), 137-177; Dualizing Complexes and Perverse Modules over Differential Algebras, Compositio Mathematica 141 (2005), 620-654. \item [[Amnon Yekutieli]], An Explicit Construction of the Grothendieck Residue Complex, Ast\'e{}risque \textbf{208} (1992); The residue complex of a noncommutative graded algebra, J. Algebra \textbf{186} (1996), no. 2, 522--543; \emph{Smooth formal embeddings and the residue complex}, Canad. J. Math. \textbf{50} (1998), no. 4, 863--896, \href{http://www.ams.org/mathscinet-getitem?mr=1638635}{MR99i:14004}; \emph{Rigid dualizing complexes via differential graded algebras (survey)}, in: Triangulated categories, 452--463, London Math. Soc. Lecture Note Ser. \textbf{375}, Cambridge Univ. Press 2010, \href{http://www.ams.org/mathscinet-getitem?mr=2681716}{MR2011h:18015}; Residues and Differential Operators on Schemes, Duke Math. J. 95 (1998), 305-341; Duality and Tilting for Commutative DG Rings, \href{http://arxiv.org/abs/1312.6411}{arXiv:1312.6411}; Residues and Duality for Schemes and Stacks (\href{http://www.math.bgu.ac.il/~amyekut/lectures/resid-stacks/handout.pdf}{lecture notes}). \item [[Roy Joshua]], \emph{Grothendieck-Verdier duality in enriched symmetric monoidal $t$-categories} ([[JoshuaDuality.pdf:file]]) \item [[Pieter Belmans]], section 2.2 of \emph{Grothendieck duality: lecture 3}, 2014 ([[BelmansDuality.pdf:file]]) \item [[Amnon Neeman]], \emph{An improvement on the base-change theorem and the functor $f^!$}, \href{http://arxiv.org/abs/1406.7599}{arXiv}. \end{itemize} \end{document}