\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Grothendieck group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{OfCommutativeMonoids}{Of commutative monoids}\dotfill \pageref*{OfCommutativeMonoids} \linebreak \noindent\hyperlink{OfStableCategories}{Of stable $\infty$-categories}\dotfill \pageref*{OfStableCategories} \linebreak \noindent\hyperlink{of_an_abelian_category}{of an abelian category}\dotfill \pageref*{of_an_abelian_category} \linebreak \noindent\hyperlink{of_a_quillen_exact_category}{of a Quillen exact category}\dotfill \pageref*{of_a_quillen_exact_category} \linebreak \noindent\hyperlink{of_a_waldhausen_category}{of a Waldhausen category}\dotfill \pageref*{of_a_waldhausen_category} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The term \emph{Grothendieck group} has two closely related meanings: \begin{itemize}% \item \hyperlink{OfCommutativeMonoids}{Grothendieck group of commutative monoids} \item \hyperlink{OfStableCategories}{Grothendieck group of stable infinity-categories} \end{itemize} In its restricted sense the Grothedieck group of a commutative monoid (i.e. of a commutative [[semi-group]] with [[unitality|unit]]) $A$ is a specific presentation of its [[group completion]], given as a certain [[group]] structure on a [[quotient]] of the [[Cartesian product]] $A \times A$. This is such that applied to the additive monoid of [[natural numbers]] $\mathbb{N}$ it produces the additive group of [[integers]] $\mathbb{Z}$ represented by pairs of natural numbers $(n_+, n_-)$ subject to an [[equivalence relation]] which identifies them with their [[difference]] $n_+ - n_-$. A vaguely similar procedure applied to [[decategorification|isomorphism classes]] of certain [[Quillen exact category|Quillen exact categories]] happens to compute a group that is called the [[algebraic K-theory]] of these categories. See [[K-theory]] for some general abstract nonsense behind this. Notably, the Grothendieck group completion of the [[decategorification]] of the category of [[topological vector bundles]] on some ([[compact Hausdorff space|compact Hausdorff]]) [[topological space]] $X$ produces the group known as the [[topological K-theory]] of $X$. Given this one speaks more generally of the ([[algebraic K-theory|algebraic]]) [[K-theory]] group of a suitable category (one presenting a [[stable (∞,1)-category]] in some way) as its \emph{Grothendieck group} . In that sense, the Grothendieck group of a ($\infty$-)category $C$ with a notion of [[fibration sequence|cofibration sequence]]s is the [[decategorification]] set $K(C)$ equipped with a notion of addition that is encoded in these homotopy exact sequences. We now first state the definition of ``Grothendieck group completion'' -- which is really just the \emph{free group completion of an abelian [[monoid]]} -- and then the definition of Grothendieck group in the sense of [[algebraic K-theory]]. Notice that a priori both concepts are entirely independent constructions on different entities. But in various special case both can be applied to specific objects so as to produce the same result. \hypertarget{OfCommutativeMonoids}{}\subsection*{{Of commutative monoids}}\label{OfCommutativeMonoids} Every [[abelian group]] is in particular a [[commutative monoid]]. The [[forgetful functor]] $U \colon Ab \to CMon$ from the [[category]] [[Ab]] to the category [[CMon]] has a [[left adjoint]] $F$ (the corresponding [[free functor]]), the \emph{[[group completion]]} functor \begin{displaymath} Ab \underoverset {\underset{U}{\longrightarrow}} {\overset{F}{\longleftarrow}} {\bot} CMon \end{displaymath} The \emph{[[Grothendieck group construction on commutative monoids]]} (def. \ref{GrothendieckGroupViaQuotientOfCartesianProduct} below) is an explict presentation of this [[group completion]] functor. For more details see at \emph{[[Grothendieck group of a commutative monoid]]}. \begin{remark} \label{}\hypertarget{}{} The idea of the free group on an abelian monoid is a very simple algebraic idea that, at least for a [[cancellative monoid]] (so that the unit is monic and one can reasonably use the term `completion') certainly predates [[Grothendieck]]. That the [[integers]] $\mathbb{Z}$ is the group completion of the [[natural numbers]] $\mathbb{N}$ goes back at least to [[Kronecker]]. \end{remark} \begin{defn} \label{GrothendieckGroupViaQuotientOfCartesianProduct}\hypertarget{GrothendieckGroupViaQuotientOfCartesianProduct}{} \textbf{([[Grothendieck group of a commutative monoid]])} Let $(A,+)$ be a [[commutative monoid]] (i.e. a commutative [[semi-group]]). On the [[Cartesian product]] of underlying sets $A \times A$ (the set of ordered [[pairs]] of elements in $A$), consider the [[equivalence relation]] \begin{displaymath} \big( (a_+, a_-) \sim_1 (b_+, b_-) \big) \;\Leftrightarrow\; \left( \underset{k \in A}{\exists} \left( a_+ + b_- + k = b_+ + a_- + k \right) \right) \end{displaymath} or equivalently the equivalence relation \begin{displaymath} \big( (a_+, a_-) \sim_2 (b_+, b_-) \big) \;\Leftrightarrow\; \left( \underset{k_1, k_2 \in A}{\exists} \left( (a_+ + k_1, a_- + k_1) = (b_+ + k_2, b_- + k_2) \right) \right) \,. \end{displaymath} Write \begin{displaymath} G(A) \coloneqq (A \times A)/\sim \end{displaymath} for the set of [[equivalence classes]] under this equivalence relation. This inherits a binary operation \begin{displaymath} + \;\colon\; G(A) \times G(A) \longrightarrow G(A) \end{displaymath} by applying the addition in $A$ on representatives: \begin{displaymath} [a_+,a_-] + [b_+,b_-] \coloneqq [ a_+ + b_+ , a_- + b_- ] \,. \end{displaymath} This defines the structure of an [[abelian group]] \begin{displaymath} (G(A),+) \end{displaymath} and this is the \emph{Grothendieck group} of $A$. This comes with a canonical [[homomorphism]] of [[semigroups]] \begin{displaymath} \itexarray{ A &\overset{\phantom{A} \eta_A \phantom{A} }{\longrightarrow}& G(A) \\ a &\overset{\phantom{AAA}}{\mapsto}& [a,0] } \,. \end{displaymath} \end{defn} \hypertarget{OfStableCategories}{}\subsection*{{Of stable $\infty$-categories}}\label{OfStableCategories} In this sense, a Grothendieck group is fundamentally something assigned to a [[stable (∞,1)-category]]. We start with the naive [[decategorification]] of $C$, i.e. the set of [[equivalence]] classes of objects, which inherits the structure of an abelian monoid. Then in addition to group-completing it as above, we add additional [[generators and relations|relations]] by the rule that for every [[fibration sequence]] \begin{displaymath} A \to X \to B \end{displaymath} in $C$, the equivalence classes $[A]$, $[B]$ and $[X]$ must satisfy \begin{displaymath} [X] = [A] + [B] \,. \end{displaymath} The result is also called the [[K-theory]] of $C$. In particular, the additive inverse $-[A]$ of an element $[A]$ is the class of its [[loop space object]] $\Omega A$, or equivalently of its [[delooping]] $\mathbf{B} A$ called the \emph{suspension} $\Sigma A$, since by definition the sequences \begin{displaymath} \Omega A \to 0 \to A \end{displaymath} and \begin{displaymath} A \to 0 \to \Sigma A \end{displaymath} are [[fibration sequence]], so that \begin{displaymath} [A] + [\Omega A] = 0 \end{displaymath} and \begin{displaymath} [A] + [\Sigma A] = 0 \,. \end{displaymath} But there are many ways to \emph{model} a [[stable (∞,1)-category]] by an ordinary category. Essentially for each of these ways there is a seperate prescription for how to model the above general construction in terms of concrete 1-categorical constructions. In particular from an \begin{itemize}% \item [[abelian category]] \end{itemize} and a \begin{itemize}% \item [[Quillen exact category]] \end{itemize} one obtains the corresponding [[category of chain complexes|categories of chain complexes]]. These are [[stable (infinity,1)-category|stable (∞,1)-categories]]. Below we list presciptions for how to compute the Grothendieck/K-theory groups of these in terms of the underlying 1-categories. Apart from the case of abelian categories, this requires some handle on the fibration sequences. A tool developed to handle exactly this for the purpose of computing Grothendieck/K-theory groups is the notion of a [[Waldhausen category]]. That provides the sufficient extra information to get a hand on the homotopy exact sequences. \hypertarget{of_an_abelian_category}{}\subsubsection*{{of an abelian category}}\label{of_an_abelian_category} Let $C$ be an [[abelian category]]. The \textbf{Grothendieck group} or [[algebraic K-theory]] group of $C$, denoted $K(C)$, is the [[abelian group]] generated by [[decategorification|isomorphism class]]es of objects of $C$, with relations of the form \begin{displaymath} [X] = [A] + [B] \end{displaymath} whenever there is a [[short exact sequence]] \begin{displaymath} 0 \to A \to X \to B \to 0 \end{displaymath} \hypertarget{of_a_quillen_exact_category}{}\subsubsection*{{of a Quillen exact category}}\label{of_a_quillen_exact_category} An exact category $C$ in the present sense is a full [[subcategory]] of an [[abelian category]] $\hat C$ such that the collection of all sequences $0 \to A \to X \to B \to 0$ in $C$ that are [[exact sequence]]s in $\hat C$ has the property that for every [[exact sequence]] $A \to X \to B$ in $\hat C$ with $A$ and $B \in C$ also their ``sum'' $X$ is in $C$. Given an exact category $C$ with the inherited notion of exact sequences this way, the definition of its Grothendieck group is as above. \hypertarget{of_a_waldhausen_category}{}\subsubsection*{{of a Waldhausen category}}\label{of_a_waldhausen_category} A [[Waldhausen category]] is a [[category with weak equivalences]] with an [[initial object]] -- called $0$ -- and equipped with the notion of auxiliary morphism called \emph{cofibrations}. These satisfy some axioms which are such that the ordinary 1-categorical [[cokernel]] of a cofibration $A \hookrightarrow X$, i.e. the ordinary [[pushout]] \begin{displaymath} \itexarray{ A &\hookrightarrow& X \\ \downarrow && \downarrow \\ 0 &\to & B } \end{displaymath} computes the desired [[homotopy colimit|homotopy]] [[pushout]]. (This is exactly dual to the reasoning by which one computes [[homotopy pullback]]s in a [[category of fibrant objects]]. See there for details.) Therefore in a Waldhausen category a [[fibration sequence|cofibration sequence]] is a [[pushout]] sequence \begin{displaymath} A \hookrightarrow X \to B \end{displaymath} where the first morphism is a cofibration. The Grothendieck/[[K-theory]]-group of the [[Waldhausen category]] $C$ is then, as before, on the [[decategorification]] $K(C)$ the abelian group structure given by \begin{displaymath} [X] = [A] + [B] \end{displaymath} for all cofibration sequences as above. \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} \begin{itemize}% \item The Grothendieck group of the [[Quillen exact category]] of [[vector bundle]]s on a space $X$ is called the [[topological K-theory]] of $X$. Notice that vector bundles do not form an [[abelian category]]. \item The Grothendieck group of the category of finite-dimensional complex-linear [[representations]] of a [[group]] is called its [[representation ring]]. \end{itemize} These two examples illustrate a general fact: the Grothendieck group of a [[monoidal category|monoidal]] [[abelian category]] inherits a ring structure from the tensor product in this category, and thus becomes a ring, called the [[Grothendieck ring]]. See also the general discussion at [[decategorification]]. \begin{itemize}% \item Every [[Quillen exact category]] $C$ is canonically equipped with the structure of a [[Waldhausen category]]. The two different prescriptions for forming the Grothendieck group $K(C)$ of $C$ do coincide. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[group completion]] \item [[K-theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Charles Weibel]], \emph{The K-book: An introduction to algebraic K-theory} (\href{http://www.math.rutgers.edu/~weibel/Kbook.html}{web}) section 2: \emph{The Grothendieck group $K_0$} (\href{http://www.math.rutgers.edu/~weibel/Kbook/Kbook.II.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item \href{http://online.itp.ucsb.edu/online/ktheory/wu/}{The Grothendieck Construction} (UCSB ITP Seminar) \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Grothendieck_group}{Grothendieck group}} \end{itemize} [[!redirects Grothendieck groups]] \end{document}