\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Grothendieck group of a commutative monoid} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Grothendieck group construction} is an explicit presentation of the [[group completion]] of a [[commutative monoid]] to an [[abelian group]]. For a [[cancellative monoid]] it reduces to the age-old construction that turns the additive monoid of [[natural numbers]] into the aditive group of [[integers]], or the multiplicative monoid of non-zero [[integers]] into the multiplicative group of non-zero [[rational numbers]]. But the construction also applies to non-[[cancellative monoids]]. The archetypical application of the construction is to monoids of [[topological vector bundles]] over some [[topological space]] $X$ under [[direct sum of vector bundles]], in which case it yields the \emph{[[topological K-theory]] group} $K(X)$ of $X$. Motivated by the example of [[topological K-theory]] there is a vaguelly related construction of [[algebraic K-theory]] groups from [[Quillen exact categories]]. Applied to the category of [[topological vector bundles]] this coincides with the Grothendieck group of the monoid of vector bundles, and hence is also called \emph{Grotheniek group construction}. For more on this [[category theory|category theoretic]] operation see at \emph{[[Grothendieck group]]}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{GrothendieckGroupViaQuotientOfCartesianProduct}\hypertarget{GrothendieckGroupViaQuotientOfCartesianProduct}{} \textbf{([[Grothendieck group of a commutative monoid]])} Let $(A,+)$ be a [[commutative monoid]] (i.e. a commutative [[semi-group]]). On the [[Cartesian product]] of underlying sets $A \times A$ (the set of ordered [[pairs]] of elements in $A$), consider the [[equivalence relation]] \begin{displaymath} \big( (a_+, a_-) \sim_1 (b_+, b_-) \big) \;\Leftrightarrow\; \left( \underset{k \in A}{\exists} \left( a_+ + b_- + k = b_+ + a_- + k \right) \right) \end{displaymath} or equivalently the equivalence relation \begin{displaymath} \big( (a_+, a_-) \sim_2 (b_+, b_-) \big) \;\Leftrightarrow\; \left( \underset{k_1, k_2 \in A}{\exists} \left( (a_+ + k_1, a_- + k_1) = (b_+ + k_2, b_- + k_2) \right) \right) \,. \end{displaymath} Write \begin{displaymath} G(A) \coloneqq (A \times A)/\sim \end{displaymath} for the set of [[equivalence classes]] under this equivalence relation. This inherits a binary operation \begin{displaymath} + \;\colon\; G(A) \times G(A) \longrightarrow G(A) \end{displaymath} by applying the addition in $A$ on representatives: \begin{displaymath} [a_+,a_-] + [b_+,b_-] \coloneqq [ a_+ + b_+ , a_- + b_- ] \,. \end{displaymath} This defines the structure of an [[abelian group]] \begin{displaymath} (G(A),+) \end{displaymath} and this is the \emph{Grothendieck group} of $A$. This comes with a canonical [[homomorphism]] of [[monoids]] ([[semigroups]] with [[unitality|unit]]): \begin{displaymath} \itexarray{ A &\overset{\phantom{A} \eta_A \phantom{A} }{\longrightarrow}& G(A) \\ a &\overset{\phantom{AAA}}{\mapsto}& [a,0] } \,. \end{displaymath} \end{defn} \begin{prop} \label{UniversalProperty}\hypertarget{UniversalProperty}{} \textbf{([[universal property]] of Grothendieck group)} The Grothendieck group in def. \ref{GrothendieckGroupViaQuotientOfCartesianProduct} is well defined, and the homomorphism $A \to G(A)$ satisfies the [[universal property]] of the [[group completion]] of $A$: Given an [[abelian group]] $B$ and a [[homomorphism]] of commutative [[semi-groups]] ([[commutative monoids]]) $f \colon A \longrightarrow B$ then there is a unique homomorphism of [[abelian groups]] $\tilde A \;\colon\; G(A) \longrightarrow B$ such that $f = \tilde f\circ \eta_A$: \begin{displaymath} \itexarray{ A \\ {}^{\mathllap{\eta_A}}\downarrow & \searrow^{\mathrlap{f}} \\ G(A) &\overset{\exists ! \tilde f}{\longrightarrow}& B } \end{displaymath} \end{prop} \begin{proof} First to see that the two equivalence relations in def. \ref{GrothendieckGroupViaQuotientOfCartesianProduct} are indeed the same: If $a_+ + b_- + k = b_+ + a_- + k$ then take $k_1 \coloneqq b_- + k$ and $k_2 \coloneqq a_- + k$ to find that \begin{displaymath} \begin{aligned} (a_+ + k_1 , a_- + k_1) & = ( a_+ + b_- + k, a_- + b_- + k) \\ & = (b_+ + a_- + k, a_- + b_- + k) \\ & = (b_+ + k_2, b_- + k_2) \end{aligned} \,. \end{displaymath} Conversely, if $(a_+ + k_1 , a_- + k_1) = (b_+ + k_2, b_- + k_2)$ then take $k \coloneqq k_1 + k_2$ to find that \begin{displaymath} \begin{aligned} a_+ + b_- + k & = a_+ + k_1 + b_- + k_2 \\ & = b_+ + k_2 + a_- + k_1 \\ & = b_+ + a_- + k \end{aligned} \,. \end{displaymath} Now to see that $(G(A),+)$ is indeed an abelian group: \begin{enumerate}% \item the second equivalence relation also makes it immediate that the [[neutral element]] is the class \begin{displaymath} [0,0] = [a,a] \end{displaymath} for all $a \in A$. \item with this the second equivalence relation makes it immediate that the [[inverse element]] to any $[a_+, a_-]$ is \begin{displaymath} -[a_+, a_-] = [a_-, a_+] \,, \end{displaymath} \end{enumerate} That this group is abelian is immediate from the fact that $A$ is assumed to be abelian. Regarding the universal property: let $B$ be any abelian group and let \begin{displaymath} \tilde f \colon G(A) \longrightarrow B \end{displaymath} be a homomorphism of abelian groups. Observe from the above that then \begin{displaymath} \begin{aligned} \tilde f([a_+,a_-]) & = \tilde f( [a_+,0] - [a_-, 0] ) \\ & = \tilde f([a_+,0]) - \tilde f([a_-,0]) \\ & = \tilde f(\eta_A(a_+)) - \tilde f(\eta_A(a_-)) \\ & = f(a_+) - f(a_-) \end{aligned} \end{displaymath} by the linearity of $f$ and the definition of $\eta_A \colon A \to G(A)$. Conversely, given $f \colon A \to B$ then this equation uniquely defines $\tilde f$ with $f = \tilde f \circ \eta_A$. \end{proof} \begin{remark} \label{GrothendieckGroupForCancellativeMonoids}\hypertarget{GrothendieckGroupForCancellativeMonoids}{} \textbf{(Grothendieck group for [[cancellative monoids]])} If $(A,+)$ is a [[cancellative monoid]], in that \begin{displaymath} \underset{a,b,z \in A}{\forall} \left( \left( a \cdot z = b \cdot z \right) \Rightarrow \left( a = b \right) \right) \end{displaymath} then, as is immediate from the first of the two equivalence relations in def. \ref{GrothendieckGroupViaQuotientOfCartesianProduct}, the definition of the Grothendieck group $G(A)$ simplifies to \begin{displaymath} G(A) = (A \times A)/ \sim \end{displaymath} with \begin{displaymath} \big( (a_+,a_-) \sim (b_+,b_-) \big) \;\Leftrightarrow\; \big( a_+ + b_- = b_+ + a_- \big) \,. \end{displaymath} \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{GrothendieckGroupOfNaturalNumbersUnderAdditionIsTheIntegers}\hypertarget{GrothendieckGroupOfNaturalNumbersUnderAdditionIsTheIntegers}{} \textbf{(Grothendieck group of the [[natural numbers]] is the [[integers]])} Let $(\mathbb{N}, +)$ be the [[commutative monoid]] of [[natural numbers]] under [[addition]]. By def. \ref{GrothendieckGroupViaQuotientOfCartesianProduct} its Grothendieck group consists of pairs $(n_+, n_-) \in \mathbb{N} \times \mathbb{N}$ subject to some equivalence relation, and since $(\mathbb{N}, +)$ is [[cancellative monoid|cancellative]], remark \ref{GrothendieckGroupForCancellativeMonoids} says that this equivalence relation is simply \begin{displaymath} \big( (a_+,a_-) \sim (b_+,b_-) \big) \;\Leftrightarrow\; \big( a_+ + b_- = b_+ + a_- \big) \,. \end{displaymath} Let \begin{displaymath} \itexarray{ (G(\mathbb{N}),+) &\longrightarrow& (\mathbb{Z},+) \\ (n_+, n_-) &\mapsto& n_+ - n_- } \end{displaymath} be the evident [[homomorphism]] of abelian groups to the additive group of [[integers]]. This is manifestly [[surjective function|surjective]]. For it to be injective we need that \begin{displaymath} (a_+, a_-) \sim (b_+,b_-) \end{displaymath} precisely if \begin{displaymath} a_+ - a_- = b_+ - b_- \;\; \in \mathbb{Z} \,. \end{displaymath} The last condition holds precisely if \begin{displaymath} a_+ + b_- = b_+ + a_- \;\; \in \mathbb{Z} \end{displaymath} which is precisely the above equivalence relation. Therefore the above homomorphism is a [[bijection]] and hence the Grothendieck group of the natural numbers is the [[integers]]: \begin{displaymath} (G(\mathbb{N}, +) \simeq \mathbb{N} \,. \end{displaymath} \end{example} \begin{example} \label{}\hypertarget{}{} Consider the commutative monoid $(\mathbb{Z}^\times, \cdot)$ of non-zero [[integers]] under [[multiplication]]. Consider the homomorphism \begin{displaymath} \itexarray{ (G(\mathbb{Z}), \cdots) &\longrightarrow& (\mathbb{Q}^\times, \cdot) \\ ( n_+ ,n_- ) &\mapsto& n_+/n_- } \end{displaymath} to the non-zero [[rational numbers]] under multiplication. It is immediate that this is surjective. For it to be injective we need that \begin{displaymath} (a_+, a_-) \sim (b_+, b_-) \end{displaymath} precisely if \begin{displaymath} a_+/ a_- = b_+ / b_- \;\; \in \mathbb{Q} \end{displaymath} which is the case precisely if \begin{displaymath} a_+ \cdot b_- = b_+ \cdot a_- \,. \end{displaymath} Since $(\mathbb{Z}^\times, \cdot)$ is a [[cancellative monoid]], this is indeed the equivalence relation on $G(\mathbb{Z}^\times)$, according to remark \ref{GrothendieckGroupForCancellativeMonoids}. \end{example} \begin{example} \label{}\hypertarget{}{} \textbf{([[topological K-theory]])} Let $X$ be a [[topological space]] and let $(Vect(X)_{/\sim}, \oplus)$ be the monoid of [[isomorphism classes]] of [[topological vector bundles]] on $X$ with addition induced from the [[direct sum of vector bundles]]. (This is in general not a [[cancellative monoid]]). Then the Grothendieck group \begin{displaymath} K(X) \coloneqq (G(Vect(X)_{/\sim}), +) \end{displaymath} is called the \emph{[[topological K-theory]]} group of $X$. \end{example} \hypertarget{references}{}\subsection*{{References}}\label{references} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Grothendieck_group}{Grothendieck group}} \end{itemize} [[!redirects Grothendieck groups of commutative monoids]] [[!redirects Grothendieck group construction on commutative monoids]] \end{document}