\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Grothendieck spectral sequence} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Statement}{Statement}\dotfill \pageref*{Statement} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Grothendieck spectral sequence} is a [[spectral sequence]] that computes the [[cochain cohomology]] of the [[composition|composite]] of two [[derived functor in homological algebra|derived functors]] on [[categories of chain complexes]]. \hypertarget{Statement}{}\subsection*{{Statement}}\label{Statement} Let $\mathcal{A},\mathcal{B},\mathcal{C}$ be [[abelian category|abelian categories]] and let $F \colon \mathcal{A}\to \mathcal{B}$ and $G \colon \mathcal{B}\to \mathcal{C}$ be [[exact functor|left exact]] [[additive functor|additive]] [[functors]]. Assume that $\mathcal{A}, \mathcal{B}$ have [[injective object|enough injectives]]. \begin{theorem} \label{}\hypertarget{}{} Write $R_F\subset \mathrm{Ob} A$ and $R_G\subset\mathrm{Ob} B$ for the [[class of adapted objects|classes of objects adapted to]] $F$ and $G$ respectively, and let furthermore $F(R_A)\subset R_B$. Then the derived functors $R F:D^+(A)\to D^+(B)$, $R G:D^+(B)\to D^+(C)$ and $R(G\circ F):D^+(A)\to D^+(C)$ are defined and the natural morphism $R(G\circ F)\to R G\circ R F$ is an isomorphism. \end{theorem} \begin{theorem} \label{}\hypertarget{}{} In the above situation, assume that for every [[injective object]] $I \in \mathcal{A}$ the object $F(I) \in \mathcal{B}$ is a $G$-[[acyclic object]]. Then for every object $A \in \mathcal{A}$ there is a [[spectral sequence]] $\{E^r_{p,q}(A)\}_{r,p,q}$ called the \textbf{Grothendieck spectral sequence} whose $E_2$-page is the composite \begin{displaymath} E^{p,q}_2(A) = R^p G \circ R^q F (A) \end{displaymath} of the [[derived functor in homological algebra|right derived functors]] of $F$ and $G$ in degrees $q$ and $p$, respectively and which is converging to to the derived functors $R^n(G\circ F)$ of the composite of $F$ and $G$: \begin{displaymath} E^{p,q}_\infty(A) \simeq G^p R^{p+q}(G \circ F)(A) \,. \end{displaymath} Moreover, this is [[natural isomorphism|natural]] in $A \in \mathcal{A}$. \end{theorem} \begin{proof} By assumption of enough injectives, we may find an \emph{[[injective resolution]]} \begin{displaymath} A \stackrel{\simeq_{qi}}{\to} C^\bullet \end{displaymath} of $A$. Next, by the discussion at \emph{\href{projective+resolution#ExistenceAndConstructionOfResolutionsOfComplexes}{injective resolution -- Existence and construction}} we may find a \emph{fully injective} resolution of the chain complex $F(C^\bullet)$: \begin{displaymath} 0 \to F(C^\bullet) \to I^{\bullet, \bullet} \,, \end{displaymath} where hence $I^{\bullet, \bullet}$ is a [[double complex]] of [[injective objects]] such that for each $n \in \mathbb{N}$ the component $0 \to F(C^n) \to I^{n,\bullet}$ is an ordinary injective resolution of $F(C^n) \in \mathcal{B}$. Thus we have the corresponding double complex $G(I^{\bullet,\bullet})$ in $\mathcal{C}$. The claim is that the Grothendieck spectral sequence is the [[spectral sequence of a double complex]] for $G(I^{\bullet, \bullet})$ equipped with the vertical-degree [[filtered chain complex|filtration]] $\{{}^{vert}E^r_{p,q}(A)\}$: \begin{displaymath} {}^{vert} E^2_{p,q}(A) \simeq R^p G (R^q F(A)) \,. \end{displaymath} To see this, notice that by the assumption that $I^{\bullet,\bullet}$ is a \emph{fully} injective projective resolution, the short exact sequences \begin{displaymath} 0 \to B^{q,p}(I) \to Z^{q,p}(I) \to H^{q,p}(I) \to 0 \end{displaymath} are [[split exact sequence|split]] (by the discussion there) and hence so is their image under any functor and hence in particular under $G$. Accordingly we have \begin{displaymath} \begin{aligned} {}^{vert}E^{p,q}_1 & \simeq H^q(G(I^{\bullet,p})) \\ & \simeq (G(Z^{q,p})) / (G(B^{q,p})) \\ & \simeq G H^{q,p} \end{aligned} \end{displaymath} (the first two equivalences by general properties of the filtration spectral sequence, the last by the above splitness). Hence it follows that \begin{displaymath} \begin{aligned} {}^{vert}E^{p,q}_2 & \simeq H^p(G(H^{q,\bullet})) \\ & \simeq R^p G (R^q F (A)) \end{aligned} \,, \end{displaymath} where in the last step we used that $H^{q,\bullet}$ is be construction an injective resolution of $H^q(F(C^\bullet)) \simeq R^q F(A)$ (using the $G$-acyclicity of $F(C^\bullet)$). This establishes the spectral sequence and its second page as claimed. It remains to determine its convergence. To that end, conside dually, the spectral sequence $\{{}^{hor}E^{p,q}_r\}$ coming from the horizontal filtration on the double complex $G(I^{\bullet, \bullet})$. By the general properties of [[spectral sequence of a double complex]] this converges to the same value as the previous one. But for this latter spectral sequence we find \begin{displaymath} \begin{aligned} {}^{hor}E^{p,q}_1 & \simeq H^q(G I^{p,\bullet}) \\ & \simeq R^q G(F(C^p)) \end{aligned} \,, \end{displaymath} the first equivalence by the general properties of filtration spectral sequences, the second then by the definition of [[derived functor in homological algebra|right derived functors]]. But by assumption $F(C^p)$ is $F$-[[acyclic object|acyclic]] and hence all these derived functors vanish in positive degree, so that \begin{displaymath} {}^{hor}E^{p,q}_1 \simeq \left\{ \itexarray{ G(F(C^p)) & if\; q = 0 \\ 0 & otherwise } \right. \,. \end{displaymath} Next, the $E_2$-page then contains just horizontal homology of $G(F(C^\bullet))$ and this is by definition now the derived functor of the composite of $F$ with $G$: \begin{displaymath} {}^{hor}E^{p,q}_2 \simeq \left\{ \itexarray{ R^p(G \circ F) & if \; q = 0 \\ 0 & otherwise } \right. \,. \end{displaymath} Since this is concentrated in the $(q = 0)$-row the spectral sequence of the horizontal filtration collapses here and hence \begin{displaymath} \begin{aligned} H^n(Tot(G(I^{\bullet,\bullet}))) &\simeq G^n H^{n+0}(Tot(G(I^{\bullet,\bullet}))) \\ & \simeq E^{n,0}_\infty \end{aligned} \end{displaymath} So in conclusion we have \begin{displaymath} \begin{aligned} R^p G(R^q F(A)) & \simeq {}^{vert}E^{p,q}_2 \\ & \Rightarrow {}^{vert} E^{p,q}_\infty \\ & \simeq G^p_{vert} H^{p+q}(Tot(G(I^{\bullet, \bullet}))) \\ & \simeq H^{p+q}(Tot(G(I^{\bullet, \bullet}))) \\ & \simeq G^{p+q}_{hor} H^{p+q}(Tot(G(I^{\bullet, \bullet}))) \\ & \simeq {}^{hor} E^{p+q,0}_\infty(A) \\ & \simeq R^{p+q}(G \circ F)(A) \end{aligned} \end{displaymath} \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Many other classes of spectral sequences are special cases of the Grothendieck spectral sequence, for instance the \begin{itemize}% \item [[Hochschild-Serre spectral sequence]] \item [[Leray spectral sequence]] \item [[base change spectral sequence]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Leture notes include \begin{itemize}% \item [[James Milne]], section 10 of \emph{[[Lectures on Étale Cohomology]]} \item Jinhyun Park, \emph{Personal notes on Grothendieck spectral sequence} (\href{http://mathsci.kaist.ac.kr/~jinhyun/note/g_s_sequence/sequence.pdf}{pdf}) \end{itemize} \end{document}