\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Grothendieck-Teichmüller tower} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{grothendieckteichmller_lie_algebra}{Grothendieck-Teichm\"u{}ller Lie algebra}\dotfill \pageref*{grothendieckteichmller_lie_algebra} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_drinfeld_associators}{Relation to Drinfeld associators}\dotfill \pageref*{relation_to_drinfeld_associators} \linebreak \noindent\hyperlink{relation_to_the_absolute_galois_group_of_the_rational_numbers}{Relation to the absolute Galois group of the rational numbers}\dotfill \pageref*{relation_to_the_absolute_galois_group_of_the_rational_numbers} \linebreak \noindent\hyperlink{relation_to_the_motivic_galois_group}{Relation to the motivic Galois group}\dotfill \pageref*{relation_to_the_motivic_galois_group} \linebreak \noindent\hyperlink{RelationToTheGraphComplex}{Relation to the graph complex}\dotfill \pageref*{RelationToTheGraphComplex} \linebreak \noindent\hyperlink{relation_to_deformation_quantization_and_the_cosmic_galois_group}{Relation to deformation quantization and the cosmic Galois group}\dotfill \pageref*{relation_to_deformation_quantization_and_the_cosmic_galois_group} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{references_2}{References}\dotfill \pageref*{references_2} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Grothendieck-Teichm\"u{}ller tower} construction involves [[moduli spaces]] outlined in [[Grothendieck]]`s \emph{[[Esquisse d'un programme]]} and then developed by [[Vladimir Drinfel'd]] and others. It involves the [[Teichmüller groupoids]] which are the [[fundamental groupoids]] of [[moduli stacks]] of [[genus]] $g$ [[curves]] with $n$ points removed. It is a basis for the definition of the \emph{Grothendieck-Teichm\"u{}ller group} which is by the definition inertia-preserving [[automorphism group]] of the Grothendieck-Teichm\"u{}ller tower. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \ldots{} \hypertarget{grothendieckteichmller_lie_algebra}{}\subsubsection*{{Grothendieck-Teichm\"u{}ller Lie algebra}}\label{grothendieckteichmller_lie_algebra} GT Lie algebra appears as the tangent Lie algebra to the GT group. Drinfel'd defined it more explicitly as follows. Let $\mathfrak{lie}_n$ be the degree completion of the [[free Lie algebra]] on $n$-generators over a fixed ground field $K$ of characteristic $0$. Let $\mathfrak{der}_n$ be the space of $K$-linear derivations $\mathfrak{lie}_n\to \mathfrak{lie}_n$. A derivation $u\in\mathfrak{der}_n$ is \textbf{tangential} if there exist $a_i\in\mathfrak{lie}_n$ for $i=1,\ldots,n$, such that $u(x_i)=[x_i,a_i]$. In particular, $u$ is determined by elements $a_1,\ldots,a_n$ and is below denoted by $(a_1,\ldots,a_n)$. The tangential derivations form a Lie subalgebra $\mathfrak{tder}_n\subset\mathfrak{der}_n$. The \textbf{GT Lie algebra} is the subspace $\mathfrak{grt}\subset\mathfrak{tder}_2$ consisting of the tangential derivations of the form $(0,\psi)$, where the identities \begin{displaymath} \psi(x,y)=-\psi(y,x),\,\,\,for\,\,\,all\,\,\,x,y, \end{displaymath} \begin{displaymath} \psi(x,y)+\psi(y,z)+\psi(z,x) = 0,\,\,\,whenever\,\,\,\,x+y+z=0, \end{displaymath} and the pentagon-type identity \begin{displaymath} \psi(t^{1,2},t^{2,34})+\psi(t^{12,3},t^{3,4})= \psi(t^{2,3},t^{3,4})+\psi(t^{1,23},t^{23,4})+\psi(t^{1,2},t^{2,3}), \end{displaymath} hold, and which is equipped with the \textbf{Ihara Lie bracket} \begin{displaymath} [\psi_1,\psi_2]_{Ihara} = (0,\psi_1)(\psi_2)-(0,\psi_2)(\psi_1)+[\psi_1,\psi_2]. \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_drinfeld_associators}{}\subsubsection*{{Relation to Drinfeld associators}}\label{relation_to_drinfeld_associators} The GT group acts freely on the set of [[Drinfeld associators]]. \hypertarget{relation_to_the_absolute_galois_group_of_the_rational_numbers}{}\subsubsection*{{Relation to the absolute Galois group of the rational numbers}}\label{relation_to_the_absolute_galois_group_of_the_rational_numbers} \begin{theorem} \label{}\hypertarget{}{} \textbf{(Drinfeld, Ihara, Deligne)} There is an inclusion of the [[absolute Galois group]] of the [[rational numbers]] into the Grothendieck-Teichm\"u{}ller group (recalled e.g. \hyperlink{Stix04}{Stix 04, theorem 6}). \end{theorem} \hypertarget{relation_to_the_motivic_galois_group}{}\subsubsection*{{Relation to the motivic Galois group}}\label{relation_to_the_motivic_galois_group} The Grothendieck-Teichm\"u{}ller group is supposed to be a [[quotient]] of the [[motivic Galois group]]. This is a conjecture due to (\hyperlink{Drinfeld91}{Drinfeld 91}). \hypertarget{RelationToTheGraphComplex}{}\subsubsection*{{Relation to the graph complex}}\label{RelationToTheGraphComplex} The Grothendieck-Teichm\"u{}ller Lie algebra is isomorphic to the 0th cohomology of [[Kontsevich]]`s [[graph complex]] (\hyperlink{Willwacher10}{Willwacher 10}). \hypertarget{relation_to_deformation_quantization_and_the_cosmic_galois_group}{}\subsubsection*{{Relation to deformation quantization and the cosmic Galois group}}\label{relation_to_deformation_quantization_and_the_cosmic_galois_group} [[Grothendieck]] predicted that the GT group is closely related to the absolute Galois group. [[Maxim Kontsevich]] later conjectured its [[action]] on certain spaces of [[quantum field theories]] and outlined its [[motivic cohomology|motivic]] aspects. This was later proven by [[Vasily Dolgushev]], see at \emph{\href{deformation+quantization#MotivicGaloisGroup}{formal deformation quantization -- Motivic Galois group action on the space of quantizations}} for details and pointers. For more see also at \emph{[[cosmic Galois group]]} for more on this. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[stable symplectic category]], \item [[motivic Galois group]], [[cosmic Galois group]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The Grothendieck-Teichm\"u{}ller group $GRT$ was originally introduced in \begin{itemize}% \item [[Vladimir Drinfel'd]], \emph{On quasitriangular quasi-Hopf algebras and on a group that is closely connected with $Gal(\overline{\mathbb{Q}/\mathbb{Q}})$}, \href{http://mi.mathnet.ru/aa199}{abs}, Rossiskaya Akademiya Nauk. Algebra i Analiz (in Russian) 2 (4): 149--181, ISSN 0234-0852, MR1080203 translation in Leningrad Math. J. 2 (1991), no. 4, 829--860 \end{itemize} inspired by \begin{itemize}% \item [[Alexander Grothendieck]], \emph{Sketch of a program}, London Math. Soc. Lect. Note Ser., 242, Geometric Galois actions, 1, 5--48, Cambridge Univ. Press, Cambridge, 1997. \end{itemize} Review: \begin{itemize}% \item [[Benoit Fresse]], \emph{Little discs operads, graph complexes and Grothendieck--Teichmüller groups}, in [[Haynes Miller]] (ed.) \emph{[[Handbook of Homotopy Theory]]} (\href{https://arxiv.org/abs/1811.12536}{arXiv:1811.12536}) \end{itemize} See also \begin{itemize}% \item Leila Schneps, Pierre Lotchak, \emph{Geometric Galois actions}, 1, London Math. Soc. Lecture Note Ser. 242 (\href{http://dx.doi.org/10.1017%2FCBO9780511666124}{doi})-- it contains a reprint of Groethendieck's Esquisse and some surveys by contributors, including Leila Schneps, \emph{The Grothendieck-Teichmueller group GT: a survey}, \href{http://www.math.jussieu.fr/~leila/SchnepsGT.pdf}{pdf} \item [[Maxim Kontsevich]], \emph{Operads and motives in deformation quantization}, Lett. Math. Phys. 48 (1999), 35-72, \href{http://arxiv.org/abs/math/9904055}{math.QA/9904055} \end{itemize} The following monograph is in progress (and as of early 2016, recently completed): \begin{itemize}% \item Benoit Fresse, \emph{Homotopy of Operads and Grothendieck-Teichm\"u{}ller groups}, \href{http://math.univ-lille1.fr/~fresse/OperadHomotopyBook/}{website} \end{itemize} \begin{quote}% The second purpose of the book is to explain, from a homotopical viewpoint, a deep relationship between operads and Grothendieck-Teichm\"u{}ller groups. This connection, which has been foreseen by M. Kontsevich (from researches on the deformation quantization process in mathematical physics), gives a new approach to understanding internal symmetries of structures occurring in various constructions of algebra and topology. In the book, we set up the background required by an in-depth study of this subject, and we make precise the interpretation of the Grothendieck-Teichm\"u{}ller group in terms of the homotopy of operads. The book is actually organized for this ultimate objective, which readers can take either as a main motivation or as a leading example to learn about general theories. \end{quote} Videos from a seminar at the Newton Institute: \begin{itemize}% \item Newton Instititute Programme Jan-April 2013: Grothendieck-Teichm\"u{}ller Groups, Deformation and Operads, \href{https://www.newton.ac.uk/event/gdo/seminars}{seminars} (some with videos) \end{itemize} \hypertarget{references_2}{}\subsection*{{References}}\label{references_2} The Drinfeld conjeture is stated in \begin{itemize}% \item [[Vladimir Drinfel'd]], \emph{On quasi-triangular Quasi-Hopf algebras and a group closely related with $Gal(\overline{\mathbb{Q}/\mathbb{Q}})$, Leningrad Math. J., 2 (1991), 829 - 860.} \end{itemize} Relation to the graph complex \begin{itemize}% \item [[Thomas Willwacher]], \emph{M. Kontsevich's graph complex and the Grothendieck-Teichmueller Lie algebra} (\href{http://arxiv.org/abs/1009.1654}{arXiv:1009.1654}) \end{itemize} \begin{itemize}% \item [[Jakob Stix]], \emph{The Grothendieck-Teichm\"u{}ller group and Galois theory of the rational numbers}, 2004 ([[StiXGaloisAndGT.pdf:file]]) \item [[Anton Alekseev]], Charles Torossian, \emph{The Kashiwara-Vergne conjecture and Drinfeld's associators}, \href{http://arxiv.org/abs/0802.4300}{arxiv/0802.4300} \end{itemize} [[!redirects Grothendieck-Teichmueller tower]] [[!redirects Grothendieck-Teichmüller group]] [[!redirects Grothendieck-Teichmuller tower]] [[!redirects Grothendieck-Teichmuller group]] [[!redirects Grothendieck-Teichmüller groups]] [[!redirects Grothendieck-Teichmueller group]] [[!redirects groupe de Grothendieck-Teichmüller]] \end{document}