\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{HQFT} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{manifolds_and_cobordisms}{}\paragraph*{{Manifolds and cobordisms}}\label{manifolds_and_cobordisms} [[!include manifolds and cobordisms - contents]] \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{general_idea}{General idea}\dotfill \pageref*{general_idea} \linebreak \noindent\hyperlink{history}{History}\dotfill \pageref*{history} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{BCobordism}{$B$-Cobordisms}\dotfill \pageref*{BCobordism} \linebreak \noindent\hyperlink{HQFTs}{Homotopy Quantum Field Theories}\dotfill \pageref*{HQFTs} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{11_dimensional_hqfts_with_background_a_}{1+1 dimensional HQFTs with background a $K(G,1)$}\dotfill \pageref*{11_dimensional_hqfts_with_background_a_} \linebreak \noindent\hyperlink{equivariant}{Equivariant}\dotfill \pageref*{equivariant} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{general_idea}{}\subsubsection*{{General idea}}\label{general_idea} What is called a \textbf{homotopy quantum field theory} is a [[TQFT]] defined on [[cobordisms]] that are equipped with the extra [[structure]] of a [[continuous function]] into a fixed [[topological space]] $B$. Hence if $Bord_n(B)$ denotes a [[category of cobordisms]] suitably equipped with maps into $B$, then an HQFT is a [[monoidal functor]] \begin{displaymath} Z \;\colon\; Bord_n(B)^{\coprod} \longrightarrow Vect^{\otimes} \,. \end{displaymath} \hypertarget{history}{}\subsubsection*{{History}}\label{history} HQFTs were introduced in (\hyperlink{Turaev99}{Turaev 99}) for 2-dimensional [[manifolds]]/[[cobordisms]] and extended them to 3-dimensional ones in (\hyperlink{Turaev00}{Turaev 00}). At about the same time, (\hyperlink{BrightwellTurner00}{Brightwell-Turner 00}) looked at what they called the [[homotopy]] surface category and its [[representation]]s. There are two viewpoints which interact and complement each other. Turaev's seems to be to see HQFTs as an extension of the tool kit for studying [[manifolds]] already given by [[TQFT]]s, whilst in Brightwell and Turner's, it is the `background space', which is probed by the surfaces in the sense of [[sigma-models]]. In the proof of the [[cobordism hypothesis]] in ([[On the Classification of Topological Field Theories|Lurie 09]]) the concept of HQFTs was refined to [[extended TQFT]] by considering an [[(∞,n)-category of cobordisms]] $Bord_n(X)$ with maps to a given [[homotopy type]] $X$. For these the [[cobordism hypothesis]] essentially says (see at \href{cobordism+hypothesis#StatementForCobordismsInAManifold}{For framed cobordisms in a topological space}) that $Bord_n(X)^\coprod$ is the [[free construction]] [[(∞,n)-category with duals]] on the [[fundamental ∞-groupoid]] $\Pi(X)$ of $X$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} An HQFT is going to be defined as assigning data to $B$-cobordisms. We first introduce these \begin{itemize}% \item \hyperlink{BCobordism}{B-cobordisms} \end{itemize} and then define \begin{itemize}% \item \hyperlink{HQFTs}{HQFTs} \end{itemize} themselves in terms of these. \hypertarget{BCobordism}{}\subsubsection*{{$B$-Cobordisms}}\label{BCobordism} Let $B$ be a [[pointed topological space]]. \begin{defn} \label{}\hypertarget{}{} A \textbf{$B$-manifold} is a pair $(X, g)$, where $X$ is a closed oriented $n$-[[manifold]] (with a choice of base point $m_i$ in each connected component $X_i$ of $X$), and $g$ is a [[continuous function]] $g : X \to B$, called the \textbf{characteristic map}, such that $g(m_i) = \ast$ for each base point $m_i$. \end{defn} \begin{defn} \label{}\hypertarget{}{} A \textbf{$B$-isomorphism} between $B$-manifolds, $\phi : ( X, g) \to ( Y, h)$ is an [[isomorphism]] $\phi : X \to Y$ of the manifolds, preserving the orientation, taking base points into base points and such that $h\phi = g$. \end{defn} \begin{remark} \label{}\hypertarget{}{} If as is often the case, the manifolds under consideration will be [[smooth manifolds]] and then `[[isomorphism]]' is interpreted as `[[diffeomorphism]]', but equally well we can position the theory in the category of PL-manifolds or triangulable topological manifolds with the obvious changes. In fact for some of the time it is convenient to develop constructions for simplicial complexes rather than manifolds, as it is triangulations that provide the basis for the combinatorial descriptions of the structures that we will be using. \end{remark} \begin{defn} \label{}\hypertarget{}{} Denote by $\mathbf{Man}(n,B)$ the [[category]] of $n$-dimensional $B$-manifolds and $B$-isomorphisms. We define a `sum' operation on this category using [[disjoint union]]. The disjoint union of $B$-manifolds is defined by \begin{displaymath} ( X, g) \amalg ( Y, h) := ( X\amalg Y, g\amalg h), \end{displaymath} with the obvious characteristic map, $g\amalg h : X \amalg Y \to B$. With this `sum' operation, $\mathbf{Man}(n,B)$ becomes a symmetric monoidal category with the unit being given by the empty $B$-manifold, $\emptyset$, with the empty characteristic map. Of course, this is an $n$-manifold by default. \end{defn} These $B$-manifolds are the objects of interest, but they have to be related by the analogue of [[cobordisms]] for this setting. \begin{defn} \label{}\hypertarget{}{} A \textbf{$B$-cobordism}, $(W,F)$, from $(X_0,g)$ to $(X_1,h)$ is a [[cobordism]] $W : X_0 \to X_1$ endowed with a [[homotopy class]] relative to the boundary of a [[continuous function]] $F : W \to B$ such that \begin{displaymath} F|_{X_0} = g \,, \;\;\;\; F|_{X_1} = h \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} Generally, unless necessary in this entry, we will not make a notational distinction between the [[homotopy class]] $F$ and any of its representatives. \end{remark} \begin{defn} \label{}\hypertarget{}{} A \textbf{$B$-isomorphism of $B$-cobordisms}, $\psi : (W,F) \to (W^\prime, F^\prime)$, is an isomorphism $\psi : W \to W^\prime$ such that \begin{displaymath} \psi (\partial_+W) = \partial_+W^\prime, \quad \psi (\partial_-W) = \partial_-W^\prime, \end{displaymath} and $F^\prime \psi = F$, in the obvious sense of homotopy classes relative to the boundary. \end{defn} We can glue $B$-cobordisms along their boundaries, or more generally, along a $B$-isomorphism between their boundaries, in the usual way. This gives rise to a [[symmetric monoidal category]] $\mathbf{HCobord}(n,B)$ of $B$-cobordisms The detailed structure of $B$-[[cobordisms]] and the resulting category $\mathbf{HCobord}(n,B)$ is given in (\hyperlink{Rodrigues03}{Rodrigues 03, appendix}), at least in the important case of [[smooth manifold|smooth]] $B$-manifolds. This category is a [[monoidal category]] with strict [[dual objects]]. \hypertarget{HQFTs}{}\subsubsection*{{Homotopy Quantum Field Theories}}\label{HQFTs} The general absract definition of an HQFT is now the following. Fix an integer $n \geq 0$ and a [[field]], $K$. All vector spaces will be tacitly assumed to be finite dimensional. In general $K$ can be replaced by a [[commutative ring]] merely by replacing finite dimensional vector spaces by projective $K$-[[modules]] of finite type, but we will not do this here. \begin{defn} \label{}\hypertarget{}{} A \textbf{homotopy quantum field theory} is a [[symmetric monoidal functor]] from $\mathbf{HCobord}(n,B)$ to the category, [[Vect]], of finite dimensional vector spaces over the [[field]] $K$. \end{defn} This definiting unwinds to the following structure in components \begin{defn} \label{}\hypertarget{}{} A \textbf{$(n + 1)$-dimensional homotopy quantum field theory}, $\tau$, with background $B$ assigns \begin{itemize}% \item to any $n$-dimensional $B$-manifold, $(X,g)$, a vector space, $\tau{(X,g)}$, \item to any $B$-isomorphism, $\phi : (X, g) \to ( Y, h)$, of $n$-dimensional $B$-manifolds, a $K$-linear isomorphism $\tau(\phi) : \tau{(X, g)} \to \tau{( Y, h)}$, \end{itemize} and \begin{itemize}% \item to any $B$-cobordism, $(W,F) : (X_0,g_0) \to (X_1,g_1)$, a $K$-linear transformation, $\tau(W) : \tau{(X_0,g_0)} \to \tau{(X_1,g_1)}$. \end{itemize} These assignments are to satisfy the following axioms: \begin{enumerate}% \item $\tau$ is functorial in $\mathbf{Man}(n,B)$, i.e., for two $B$-isomorphisms, $\psi: (X, g) \to ( Y, h)$ and $\phi : ( Y, h) \to (P,j)$, we have $\tau(\phi\psi) = \tau(\phi)\tau(\psi),$ and if $1_{(X,g)}$ is the identity $B$-isomorphism on $(X,g)$, then $\tau(1_{(X,g)}) = 1_{\tau{(X,g)}}$ \item There are natural isomorphisms \begin{displaymath} c_{(X,g),(Y,h)} : \tau((X,g)\amalg (Y,h)) \cong \tau(X,g)\otimes \tau(Y,h), \end{displaymath} and an isomorphism, $u : \tau(\emptyset) \cong K$, that satisfy the usual axioms for a [[symmetric monoidal functor]]. \item For $B$-cobordisms, $(W,F) : (X,g) \to (Y,h)$ and $(V,G): (Y^\prime, h^\prime) \to (P,j)$ glued along a $B$-isomorphism $\psi :(Y,h) \to (Y^\prime,h^\prime)$, we have $\tau((W,F)\amalg_\psi (V,G))= \tau(V,G)\tau(\psi)\tau(W,F).$ \item For the identity $B$-cobordism, $1_{(X,g)} = (I\times X, 1_g)$, we have $\tau( 1_{(X,g)}) = 1_{\tau(X,g)}.$ \item For $B$-cobordisms $(W,F) : (X,g) \to (Y,h)$ and $(V,G) : (X^\prime,g^\prime) \to (Y^\prime,h^\prime)$ and $(P,J): \emptyset \to \emptyset$, some fairly obvious diagrams are commutative. \end{enumerate} \end{defn} \begin{remark} \label{}\hypertarget{}{} These axioms are slightly different from those given in the original paper of Turaev in 1999. The really significant difference is in axiom 4, which is weaker than as originally formulated, where any $B$-cobordism structure on $I \times X$ was considered as trivial. The effect of this change is important as it is now the case that the HQFT is determined by the $(n+1)$-type of $B$, cf. (\hyperlink{Rodrigues03}{Rodrigues 03}). With the revised version of the axioms, it becomes possible to attempt to classify HQFTs with a given $n$ and $B$. Turaev did this in the original paper with $n = 2$ and $B$ an [[Eilenberg-MacLane space]], $K(G,1)$. The results of Brightwell and Turner essentially gave the solution for $B$ a $K(A,2)$. \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{11_dimensional_hqfts_with_background_a_}{}\subsubsection*{{1+1 dimensional HQFTs with background a $K(G,1)$}}\label{11_dimensional_hqfts_with_background_a_} If we look at the case $n= 1$ and with background an [[Eilenberg-Mac Lane space]] $K(G,1)$ for a [[discrete group]] $G$, then HQFTs correspond to [[crossed G-algebra|crossed G-algebras]], in much the same way that commutative [[Frobenius algebras]] correspond to [[2d TQFT]]s. There the correspondence is given by a [[2d TQFT]], $Z$, corresponds to the [[Frobenius algebra]], $Z(S^1)$. This is because the circle $S^1$ is a [[Frobenius algebra]], sometimes called a Frobenius object, in the category $Bord_2$ of 2d-[[cobordism]]s between 1-manifolds. In the case of HQFTs, the role of the circle is replaced by the family of circles with characteristic maps to $B$. Each one gives, combinatorially, a circle together with a labelling of the boundary by an element of $G$. (It does not seem to be known how to get a $G$-graded version of an abstract Frobenius object that will correspond to this situation, although this is probably not too hard to do.) \hypertarget{equivariant}{}\subsubsection*{{Equivariant}}\label{equivariant} In (\hyperlink{MooreSegal06}{Moore-Segal 06}) are discussed $G$-[[equivariant TFT]]s and it is shown that they naturally correspond to a simple case of Turaev's HQFTs. They relate (1+1) equivariant TFTs to Turaev's [[crossed G-algebras]] (which they call Turaev algebras). \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Vladimir Turaev]], \emph{Homotopy field theory in dimension 2 and group-algebras} (\href{http://arxiv.org/abs/math.QA/9910010}{arXiv:math.QA/9910010}) \item [[Vladimir Turaev]], \emph{Homotopy field theory in dimension 3 and crossed group-categories} (\href{http://arxiv.org/abs/math.GT/0005291}{arXiv:math.GT/0005291}). \item V. Turaev, Homotopy Quantum Field Theory, Tracts in Mathematics 10, (with Appendices by Michael Muger and Alexis Vurelizier), European Mathematical Society, June 2010. \item M. Brightwell and P. Turner, \emph{Representations of the homotopy surface category of a simply connected space}, J. Knot Theory and its Ramifications, 9 (2000), 855--864. \item G. Rodrigues, \emph{Homotopy Quantum Field Theories and the Homotopy Cobordism Category in Dimension 1 + 1}, J. Knot Theory and its Ramifications, 12 (2003) 287--317 (\href{http://arxiv.org/abs/math.QA/0105018}{arXiv:math.QA/0105018}). \item [[T. Porter]] and V. Turaev, Formal Homotopy Quantum Field Theories, I: Formal Maps and Crossed $C$-algebras, Journal of Homotopy and Related Structures 3(1), 2008, 113--159. (\href{http://arxiv.org/abs/math.QA/0512032}{arXiv:math.QA/0512032}). \item [[T. Porter]], Formal Homotopy Quantum Field Theories II: Simplicial Formal Maps, in Cont. Math. 431, p. 375 - 404 (Streetfest volume: Categories in Algebra, Geometry and Mathematical Physics - edited by A. Davydov, M. Batanin, and M. Johnson, S. Lack, and A. Neeman) (\href{http://arxiv.org/abs/math.QA/0512034}{arXiv:math.QA/0512034}) \end{itemize} A treatment of HQFTs that includes some details of the links with TQFTs is given in [[HQFT-XMenagerie.pdf|HQFTs meet the Menagerie:file]], which is a set of notes prepared by [[Tim Porter]] for a school and workshop in Lisbon, Feb. 2011. Related ideas are discussed in \begin{itemize}% \item [[Greg Moore]], [[Graeme Segal]], \emph{D-branes and K-theory in 2D topological field theory} (\href{http://arxiv.org/abs/hep-th/0609042}{arXiv:hep-th/0609042}) \end{itemize} [[!redirects HQFTs]] [[!redirects homotopy quantum field theory]] [[!redirects homotopy quantum field theories]] \end{document}