\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Haefliger groupoid} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Variants}{Variants and Generalizations}\dotfill \pageref*{Variants} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{classification_of_foliations}{Classification of foliations}\dotfill \pageref*{classification_of_foliations} \linebreak \noindent\hyperlink{universal_characterization}{Universal characterization}\dotfill \pageref*{universal_characterization} \linebreak \noindent\hyperlink{sheaves_and_stacks_on_the_haefliger_groupoid}{Sheaves and stacks on the Haefliger groupoid.}\dotfill \pageref*{sheaves_and_stacks_on_the_haefliger_groupoid} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} For $n \in \mathbb{N}$, the \textbf{Haefliger groupoid} $\Gamma^n$ is the [[groupoid]] whose set of [[objects]] is the [[Cartesian space]] $\mathbb{R}^n$ and for which a [[morphism]] $x \to y$ is a [[germ]] of a [[diffeomorphism]] $(\mathbb{R}^n ,x) \to (\mathbb{R}^n ,y)$. This is regarded as a [[topological groupoid|topological]] or [[Lie groupoid|Lie]] [[étale groupoid]] via the canonical [[topological space|topology]]/[[smooth structure]] on $(\Gamma^n)_0 = \mathbb{R}^n$ and taking $s \colon (\Gamma^n)_1 \to (\Gamma^n)_0$ to be the [[étale space]] \href{etale+space#RelationToSheaves}{associated} to the [[sheaf]] on $\mathbb{R}^n$ (with its canonical [[open cover]] [[Grothendieck topology]]) which is the [[sheafification]] of the presheaf that sends $U \subset \mathbb{R}^n$ to the set of all open embeddings of $U$ into $\mathbb{R}^n$. The [[smooth stack]] represented by the smooth Haefliger groupoid is also called the \emph{Haefliger stack}. \end{defn} \hypertarget{Variants}{}\subsection*{{Variants and Generalizations}}\label{Variants} \begin{remark} \label{}\hypertarget{}{} There is also the full smooth structure on the space of germs of diffeomorphisms. This gives a Lie groupoid whose underlying bare groupoid is the same as that of the Haefliger groupoid, but whose smooth structure is different. \end{remark} \begin{remark} \label{}\hypertarget{}{} More generally for a given [[integrable G-stucture]] there is a corresponding Haefliger groupoid, for instance for [[symplectic structures]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} Instead of considering [[germs]] of local diffeomorphisms one may consider (just) order-$k$ [[jets]] of these. The resulting Lie groupoids are known as [[jet groupoids]] (see \hyperlink{Lorenz09}{Lorenz 09}) \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{classification_of_foliations}{}\subsubsection*{{Classification of foliations}}\label{classification_of_foliations} The Haefliger groupoid classifies [[foliations]]. See at \emph{[[Haefliger theorem]]}. \hypertarget{universal_characterization}{}\subsubsection*{{Universal characterization}}\label{universal_characterization} Consider in the following the union $\mathcal{H}$ of Haefliger groupoids over all $n$. \begin{prop} \label{HIsTerminalInEtaleEtale}\hypertarget{HIsTerminalInEtaleEtale}{} The Haefliger stack is a [[terminal object]] in the [[2-category]] of [[étale stacks]] on the site of [[smooth manifolds]] with [[étale morphisms]] between them. \end{prop} (\hyperlink{Carchedi12}{Carchedi 12, theorem 3.3.}) This implies (\hyperlink{Carchedi12}{Carchedi 12, 3,2}) \begin{theorem} \label{StacksOnEtaleSiteAndEtaleStacks}\hypertarget{StacksOnEtaleSiteAndEtaleStacks}{} There is an equivalence \begin{displaymath} \Theta \colon St(SmthMfd^{et}) \simeq EtSt(SmthMfd)^{et} \end{displaymath} between [[stacks]] on the [[site]] of smooth manifolds with [[local diffeomorphisms]] between them and [[étale stacks]] with [[étale morphisms]] between them inside all [[smooth stacks]]. \end{theorem} (\hyperlink{Carchedi12}{Carchedi 12, theorem 1.3}) \begin{remark} \label{}\hypertarget{}{} This in turn implies for instance that the Haefliger groupoid for [[complex structures]] (\hyperlink{Carchedi12}{Carchedi 12, p. 38}) is simply the image under the equivalence $\Theta$ in theorem \ref{StacksOnEtaleSiteAndEtaleStacks} of the sheaf on $SmthMfd^{et}$ which sends each smooth manifold to its set of [[complex structures]]. (\ldots{}) \end{remark} \hypertarget{sheaves_and_stacks_on_the_haefliger_groupoid}{}\subsubsection*{{Sheaves and stacks on the Haefliger groupoid.}}\label{sheaves_and_stacks_on_the_haefliger_groupoid} Consider in the following the union $\mathcal{H}$ of Haefliger groupoids over all $n$. \begin{prop} \label{HIsTerminalInEtaleEtale}\hypertarget{HIsTerminalInEtaleEtale}{} The [[category of sheaves]] over $\mathcal{H}$ is equivalently the category of sheaves on the [[site]] of [[smooth manifolds]] with [[local diffeomorphism]] between them. \end{prop} (\hyperlink{Carchedi12}{Carchedi 12, theorem 3.1}). \begin{prop} \label{}\hypertarget{}{} The [[2-topos]] over the Haefliger stack is equivalent to the 2-topos over the site $SmthMfd^{et}$ of smooth manifolds with local diffeomorphisms between them: \begin{displaymath} St(\mathcal{H}) \simeq St(SmthMfd^{et}) \end{displaymath} \end{prop} (\hyperlink{Carchedi12}{Carchedi 12, 3.2}). \hypertarget{references}{}\subsection*{{References}}\label{references} Original articles include \begin{itemize}% \item [[André Haefliger]], \emph{Groupo\"i{}des d'holonomie et espaces classiants} , Ast\'e{}risque 116 (1984), 70-97 \item [[Raoul Bott]], \emph{Lectures on characteristic classes and foliations} , Springer LNM 279, 1-94 \end{itemize} A textbook account is in \begin{itemize}% \item [[Ieke Moerdijk]], [[Janez Mrčun]], \emph{[[Introduction to foliations and Lie groupoids]]}, Cambridge Studies in Advanced Mathematics \textbf{91}, 2003. x+173 pp. ISBN: 0-521-83197-0 \end{itemize} Discussion in a broader context of [[étale stacks]] is in \begin{itemize}% \item [[David Carchedi]], section 2.2, section 3 of \emph{\'E{}tale Stacks as Prolongations} (\href{http://arxiv.org/abs/1212.2282}{arXiv:1212.2282}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Haefliger_structure}{Haefliger structure}} \end{itemize} Discussion of [[jet groupoids]] includes \begin{itemize}% \item Arne Lorenz, \emph{Jet Groupoids, Natural Bundles and the Vessiot Equivalence Method}, Thesis (\href{http://wwwb.math.rwth-aachen.de/~arne/Dissertation_Lorenz_Arne.pdf}{pdf}) 2009 \end{itemize} The [[geometric realization]]/[[shape modality]] for Haefliger-type groupoids is discussed in \begin{itemize}% \item [[David Carchedi]], \emph{On The Homotopy Type of Higher Orbifolds and Haefliger Classifying Spaces} (\href{http://arxiv.org/abs/1504.02394}{arXiv:1504.02394}) \end{itemize} [[!redirects Haefliger groupoids]] [[!redirects Haefliger stack]] [[!redirects Haefliger stacks]] \end{document}