\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Hall algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{in_terms_of_2segal_spaces}{In terms of 2-Segal spaces}\dotfill \pageref*{in_terms_of_2segal_spaces} \linebreak \noindent\hyperlink{MotivicHallAlgebra}{Motivic Hall algebra}\dotfill \pageref*{MotivicHallAlgebra} \linebreak \noindent\hyperlink{in_terms_of_constructible_sheaves}{In terms of constructible sheaves}\dotfill \pageref*{in_terms_of_constructible_sheaves} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{in_terms_of_2segal_spaces}{}\subsubsection*{{In terms of 2-Segal spaces}}\label{in_terms_of_2segal_spaces} Given a [[2-Segal space]] $X_\bullet$ such that the [[spans]] \begin{displaymath} X_1 \times X_1 \stackrel{(\partial_2, \partial_0)}{\leftarrow} X_2 \stackrel{\partial_1}{\rightarrow} X_1 \end{displaymath} and \begin{displaymath} pt \leftarrow X_0 \stackrel{s_0}{\to} X_1 \end{displaymath} admit pull-push [[integral transforms]] in some given [[cohomology theory]] $h$. Then the \textbf{Hall algebra} of $X$ with [[coefficients]] in $H$ is the [[associative algebra]] structure on $h(X_1)$ induced by these pull-push operations. This is the perspective of \hyperlink{DyckerhoffKapranov12}{Dyckerhoff-Kapranov 12, def. 8.1.8}. \hypertarget{MotivicHallAlgebra}{}\subsubsection*{{Motivic Hall algebra}}\label{MotivicHallAlgebra} Specifically for a given [[algebraic stack]] $X$ and with \begin{displaymath} X \leftarrow X^{(2)} \rightarrow X\times X \end{displaymath} denoting the moduli stack of 2-flags of coherent sheaves on $X$, then the corresponding pull-push multiplication on the motivic Grothendieck ring $K(X)$ is called the \emph{motivic Hall algebra} of $X$ (due to [[Dominic Joyce]] reviewed e.g. in \hyperlink{Bridgeland10}{Bridgeland 10, 4.2}). Discussion of motivic Hall algebras of [[Calabi-Yau 3-folds]] is in (\hyperlink{KontsevichSoibelman08}{Kontsevich-Soibelman 08}). \hypertarget{in_terms_of_constructible_sheaves}{}\subsubsection*{{In terms of constructible sheaves}}\label{in_terms_of_constructible_sheaves} The \emph{Hall algebra} of an [[abelian category]] is the [[Grothendieck group]] of [[constructible sheaves]]/[[perverse sheaves]] on the [[moduli stack]] of [[object]]s in the category. The Hall algebra is an algebra because the constructible derived category of the moduli stack of objects in an [[abelian category]] is [[monoidal category|monoidal]] in a canonical way. This perspective is taken from (\hyperlink{Webster}{Webster11}). See there for more details. \hypertarget{references}{}\subsection*{{References}}\label{references} A good survey is given in \begin{itemize}% \item [[Ben Webster]], \emph{Hall algebras are Grothendieck groups} (\href{http://sbseminar.wordpress.com/2011/04/18/hall-algebras-are-grothendieck-groups/#more-3988}{SBS}) \end{itemize} The characterization via [[2-Segal spaces]] is due to \begin{itemize}% \item Tobias Dyckerhoff, [[Mikhail Kapranov]], \emph{Higher Segal spaces I}, (\href{http://arxiv.org/abs/1212.3563}{arxiv:1212.3563}) \end{itemize} Canonical references on Hall algebras include the following. \begin{itemize}% \item [[Kapranov|M. Kapranov]], \emph{Eisenstein series and quantum affine algebras}, Journal Math. Sciences \textbf{84} (1997), 1311--1360. \item M. Kapranov, E. Vasserot, \emph{Kleinian singularities, derived categories and Hall algebras}, Math. Ann. \textbf{316} (2000), 565-576, \href{http://arxiv.org/abs/math/9812016}{arxiv/9812016} \item [[Bernhard Keller]], Dong Yang, Guodong Zhou, \emph{The Hall algebra of a spherical object}, J. London Math Soc. (2) \textbf{80} (2009) 771--784, \href{http://dx.doi.org/10.1112/jlms/jdp054}{doi}, \href{www.math.jussieu.fr/~keller/publ/HallAlgSphericalObject.pdf}{pdf} \item C. Ringel, \emph{Hall algebras and quantum groups}, Invent. Math. \textbf{101} (1990), no. 3, 583--591. \item O. Schiffmann, \emph{Lectures on Hall algebras}, \href{http://arXiv.org/abs/math/0611617}{arXiv:math/0611617} \item O. Schiffmann, E. Vasserot, \emph{The elliptic Hall algebra}, Cherednik Hecke algebras and Macdonald polynomials, \href{http://arxiv.org/abs/0802.4001}{arXiv:0802.4001}, (2008), to appear in Compositio Math.; \emph{The elliptic Hall algebra and the equivariant K-theory of the Hilbert scheme of A2, \href{http://arXiv.org/abs/0905.2555}{arXiv:0905.2555}} \item O. Schiffman, \emph{Drinfeld realization of the elliptic Hall algebra}, \href{http://arxiv.org/abs/1004.2575}{arxiv/1004.2575} \item O. Schiffmann, E. Vasserot, \emph{Hall algebras of curves, commuting varieties and Langlands duality}, \href{http://arxiv.org/abs/1009.0678}{arxiv/1009.0678} \item [[Toen|B. Toen]], \emph{Derived Hall algebras}, \href{http://arxiv.org/abs/math/0501343}{arxiv/0501343} \item [[Alexander I. Efimov|Alexander Efimov]], \emph{Cohomological Hall algebra of a symmetric quiver}, \href{http://arxiv.org/abs/1103.2736}{arxiv/1103.2736} \item Description of seminar on stability conditions, Hall algebras and [[Stokes phenomenon|Stokes factors]] in Bonn 2009 ([[Daniel Huybrechts|D. Huybrechts]]), \href{http://www.math.uni-bonn.de/people/compgeo/Hall.pdf}{pdf} \item wikipedia: \href{http://en.wikipedia.org/wiki/Hall_algebra}{Hall algebra}, \href{http://en.wikipedia.org/wiki/Ringel–Hall_algebra}{Ringel-Hall algebra} \item sbseminar blog: \href{http://sbseminar.wordpress.com/2009/03/25/hall-algebras-and-donaldson-thomas-invariants-i}{Hall algebras and Donaldson-Thomas invariants-i} \item Bangming Deng, Jie Du, [[Brian Parshall]], Jianpan Wang, \emph{Finite dimensional algebras and quantum groups}, Mathematical Surveys and Monographs \textbf{150}, Amer. Math. Soc. 2008. xxvi+759 pp. (chap. 10: Ringel-Hall algebras) \href{http://www.ams.org/mathscinet-getitem?mr=2457938}{MR2009i:17023)} \item David Hernandez, Bernard Leclerc, \emph{Quantum Grothendieck rings and derived Hall algebras}, \href{http://arxiv.org/abs/1109.0862}{arxiv/1109.0862} \item Parker E. Lowrey, \emph{The moduli stack and motivic Hall algebra for the bounded derived category}, \href{http://arxiv.org/abs/1110.5117}{arxiv/1110.5117} \item [[Tobias Dyckerhoff]], \emph{Higher categorical aspects of Hall Algebras}, (\href{https://arxiv.org/abs/1505.06940}{arXiv:1505.06940}) \end{itemize} Motivic Hall algebras: \begin{itemize}% \item [[Tom Bridgeland]], \emph{An introduction to motivic Hall algebra} (\href{http://arxiv.org/abs/1002.4372}{arXiv:1002.4372}) \item [[Maxim Kontsevich]], [[Yan Soibelman]], \emph{Stability structures, motivic Donaldson-Thomas invariants and cluster transformations} (\href{http://arxiv.org/abs/0811.2435}{arXiv:0811.2435}) \item [[Kontsevich|M. Kontsevich]], [[Yan Soibelman|Y. Soibelman]], \emph{Motivic Donaldson-Thomas invariants: summary of results}, \href{http://arxiv.org/abs/0910.4315}{arxiv/0910.4315} \item [[Maxim Kontsevich]], [[Yan Soibelman]], \emph{Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants}, \href{http://arxiv.org/abs/1006.2706}{arxiv/1006.2706} \end{itemize} [[!redirects Hall algebras]] [[!redirects motivic Hall algebra]] [[!redirects motivic Hall algebras]] \end{document}