\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Hamiltonian mechanics} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition_in_terms_of_symplectic_geometry}{Definition in terms of symplectic geometry}\dotfill \pageref*{definition_in_terms_of_symplectic_geometry} \linebreak \noindent\hyperlink{comments_on_this_definition}{Comments on this definition}\dotfill \pageref*{comments_on_this_definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{vortices_on_the_sphere}{Vortices on the sphere}\dotfill \pageref*{vortices_on_the_sphere} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Hamiltonian mechanics is a formulation of [[mechanics]] in which the basic datum in a mechanical system is a function $H$, the [[Hamiltonian]] of the system, which gives the total energy in the system in terms of the [[position|positions]] and [[momentum|momenta]] of the objects in the system. More abstractly, the Hamiltonian is a function on [[phase space]], a [[manifold]] whose coordinates are [[generalized position|generalised]] positions $q^i$ and momenta $p_i$. (Compare this to [[Lagrangian mechanics]], in which the [[Lagrangian]] is a function on [[state space]], whose coordinates are generalised positions and [[velocity|velocities]].) So to do Hamiltonian mechanics properly, you must `mind your $p$s and $q$s' (blame [[John Baez]] for this pun). To begin with, we often take phase space to be the [[cotangent bundle]] of [[configuration space]]. (Compare that state space is the [[tangent bundle]] of configuration space.) This comes equipped with a natural $2$-[[differential form|form]] \begin{displaymath} \omega = \sum_i \mathrm{d}p_i \wedge \mathrm{d}q^i , \end{displaymath} or simply $\omega = \mathrm{d}p_i \wedge \mathrm{d}q^i$ using the [[Einstein summation convention]]. This $2$-form is closed, in fact exact, since it is the [[exterior derivative|differential]] of the [[action functional|action form]] $\bar{\mathrm{d}}S = p_i \wedge \mathrm{d}q^i$, and therefore it is a [[symplectic form]]. However, it is also possible to take phase space to be \emph{any} [[symplectic manifold]], or even any [[Poisson manifold]]. In any case, phase space itself gives only the [[kinematics]] (in a momentum-based rather than velocity-based sense); you need the Hamiltonian $H$ to get the [[dynamics]]. Hamiltonian mechanics was developed originally for [[classical mechanics]], but it is also the best known formulation of [[quantum mechanics]]; many students of [[physics]] (and even more so, students of [[chemistry]]) learn it only when they study the latter. This sometimes leads to confusion about the essential differences between classical and quantum physics. \hypertarget{definition_in_terms_of_symplectic_geometry}{}\subsection*{{Definition in terms of symplectic geometry}}\label{definition_in_terms_of_symplectic_geometry} Hamiltonian mechanics is best formalized in terms of [[symplectic geometry]] as described for instance in the monograoph \begin{itemize}% \item [[Vladimir Arnold]], \emph{Mathemtical Methods of Classical Mechanics} Springer. \end{itemize} A classical Hamiltonian [[mechanical system]] is a pair $((X,\omega), H)$ consisting of a \begin{itemize}% \item [[symplectic manifold]] $(X,\omega)$ \item and a [[Hamiltonian]] function $H \in C^\infty(X)$. \end{itemize} Here \begin{itemize}% \item $X$ is the \textbf{[[phase space]]} of the physical system; \item a curve $\gamma : \mathbb{R} \to X$ is a \textbf{[[trajectory]]} of the physical system in time; \item $(X,\omega)$ defines the \textbf{[[kinematics]]} of the system; \item $H$ is the \textbf{[[Hamiltonian]]} that defined the \textbf{[[dynamics]]} of the system. \end{itemize} The \textbf{dynamics} is encoded by declaring that those trajectories $\gamma : \mathbb{R} \to X$ are the physically realized trajectories that satisfy the equation \begin{displaymath} d H = \omega(\gamma', -) \end{displaymath} The components of this are \textbf{[[Hamilton's equations]]}. In more detail this equation means that for each $t \in \mathbb{R}$ the [[differential form|1-form]] \begin{displaymath} (d H)_{\gamma(t)} \end{displaymath} and the 1-form \begin{displaymath} \omega_{\gamma(t)}((\frac{d}{d t}\gamma(t), -) \end{displaymath} coincide. \hypertarget{comments_on_this_definition}{}\subsubsection*{{Comments on this definition}}\label{comments_on_this_definition} At first, this formulation of Hamilton's mechanics is just that, an equivalent reformulation. But as any reformulation in more abstract terms, it serves to \begin{enumerate}% \item clarify a structure \item allow more powerful thinking about that structure \item and eventually it bears in it the seed for further developments pointing beyond this structure \end{enumerate} Regarding the first point: this formulation of Hamiltonian mechanics makes clear what th meaning of Hamilton's equations is for systems topologically more interesting than the example $X = \mathbb{R}^{2 n}$ that many introductory physics texts concentrate on- Regarding the second point: the differential calculus formulation lends itself much more to high-powered arguments than the traditional component-ridden presentation. Of course the latter may still be the preferred method for some concrete computations. Regarding the second point: after Hamilton's times people started thinking about what [[quantization]] of a classical system should mean. One successful formalization is that of [[geometric quantization]] which takes a symplectic manifold with Hamiltonian function on it as input datum. The impact that this idea of quantization from symplectic geometry eventually had is hard to underestimate. In the hands of [[Alan Weinstein]] and his school it led to [[symplectic groupoid]]s, [[Courant algebroid]]s and other higher [[Lie theory|Lie theoretic structures]]. In the hands of [[Maxim Kontsevich]] it led to the theorem on formal [[deformation quantization]] and the vast machinery nowadays associated with that. \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} The symplectic-geometry description of Hamiltonian mechanics is especially well-suited to describe topologically nontrivial phase spaces that are not [[cotangent bundle]]s. \hypertarget{vortices_on_the_sphere}{}\paragraph*{{Vortices on the sphere}}\label{vortices_on_the_sphere} $n$ vortices on the sphere as finite dimensional limit of 2D [[equation of motion|Euler equations]]: the phase space of the system of $n$ vortices is not a [[cotangent bundle]] but is $(S^2)^n$ . \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[Hamilton's equations]] \item [[Hamilton-Jacobi equation]] \item traditional [[Lagrangian mechanics]] and [[Hamiltonian mechanics]] are naturally embedding into [[local prequantum field theory]] by the notion of [[prequantized Lagrangian correspondences]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Named after [[William Rowan Hamilton]]. A motivation for formulating Hamiltonian mechanics in terms of symplectic manifolds can be found in \begin{itemize}% \item Henry Cohn, \emph{\href{http://math.mit.edu/~cohn/Thoughts/symplectic.html}{Why symplectic geometry is the natural setting for classical mechanics}} \end{itemize} \end{document}