\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Hamiltonian n-vector field} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{InterpretationInHigherGeometry}{Interpretation in higher geometry}\dotfill \pageref*{InterpretationInHigherGeometry} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Hamiltonian $n$-vector field} is the $n$-dimensional analog of a [[Hamiltonian vector field]] as one passes from [[symplectic geometry]] to [[multisymplectic geometry]]/[[n-plectic geometry]]. Roughly, the [[transgression]] of a Hamiltonian $n$-vector field to [[mapping spaces]] out of an $(n-1)$-manifold yields an ordinary [[Hamiltonian vector field]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{ExtendedHamiltonEquations}\hypertarget{ExtendedHamiltonEquations}{} Let $X$ be a [[smooth manifold]] equipped with a degree $(n+1)$ [[differential form]] $\omega \in \Omega^{n+1}(X)$ for $n \in \mathbb{N}$, with the pair $(X,\omega)$ regarded as a [[multisymplectic manifold]]/[[n-plectic manifold]]. Let moreover $H \;\colon\; X \longrightarrow \mathbb{R}$ be a [[smooth function]], to be regarded as an extended [[Hamiltonian function]], hence a [[de Donder-Weyl Hamiltonian]]. Then a \emph{Hamiltonian $n$-vector field} on $X$ is an $n$-[[multivector field]] $\mathbf{v} \in \Gamma(\wedge^{n} T X)$ satisfying the analog of [[Hamilton's equations]], namely the [[differential equation]] of [[differential 1-forms]] on $X$ \begin{displaymath} \iota_{\mathbf{v}} \omega = \mathbf{d} H \,. \end{displaymath} \end{defn} \begin{example} \label{}\hypertarget{}{} Let $\Sigma$ be a [[manifold]] to be regarded as a [[spacetime]]/[[worldvolume]] and let $E \to \Sigma$ be a [[vector bundle]], to be regarded as a [[field bundle]]. Assume for simplicity of notation that both $\Sigma$ and $E$ are in fact [[Cartesian spaces]] (which is always true locally). Write $j^1 E$ for the corresponding jet bundle]], equipped with the canonical ``kinetic'' [[n-plectic form]] which in local coordinates reads \begin{displaymath} \omega \coloneqq \mathbf{d}_v\phi^a_{,i} \wedge \mathbf{d}_v q^a \wedge (\iota_{\partial_i} vol_\Sigma) \end{displaymath} as discussed at [[multisymplectic geometry]]. Then for $\phi^a$ and $\phi^a_{,i}$ smooth functions on $\Sigma$ and for vector fields \begin{displaymath} v_i \coloneqq \frac{\partial}{\partial \sigma^i} + \frac{\partial \phi^a}{\partial \sigma^i} + \frac{\partial \phi^a_{,j}}{\partial \sigma^j} \frac{\partial}{\partial \phi^a_{,i}} \end{displaymath} the equation \begin{displaymath} \iota_{v_1 \cdots v_n} \omega = \pm \mathbf{d}H \end{displaymath} is equivalent to the [[de Donder-Weyl equations]] \begin{displaymath} \frac{\partial \phi^a}{\partial \sigma^i} = \frac{\partial H}{\partial p^i_a} \;\;\;\; \frac{\partial p^i_a}{\partial \sigma^i} = \frac{\partial H}{\partial \phi^a} \,. \end{displaymath} \end{example} \begin{proof} We have \begin{displaymath} \mathbf{d}_v \phi^a = \mathbf{d}\phi^a - \phi^a_{,i}\mathbf{d}\sigma^i \end{displaymath} and \begin{displaymath} \mathbf{d}_v \phi^a_{,i} = \mathbf{d}\phi^a_{,i} - \phi^a_{,i j} \mathbf{d}\sigma^j \,. \end{displaymath} The claimed equation comes from contracting in $\mathbf{d}\phi^a_{,i} \wedge \mathbf{d}\phi^a \wedge (\iota_{\partial_i}vol_\Sigma)$ all but the $i$th vector with the contracted volume form. The remaining contractions are then \begin{displaymath} \frac{\partial \phi^a}{\partial \sigma^i \partial \sigma^{[j}} \frac{\partial \phi_a}{\partial \sigma^{i]}} \mathbf{d}\sigma^j \end{displaymath} and these cancel against the horizontal derivative contributions form above. \end{proof} \hypertarget{InterpretationInHigherGeometry}{}\subsection*{{Interpretation in higher geometry}}\label{InterpretationInHigherGeometry} We discuss here how Hamiltonian $n$-vector fields are equivalently homorphisms from an $n$-dimensional surface into the [[Poisson bracket Lie n-algebra]] associated with the given [[n-plectic geometry]]. \begin{remark} \label{nExtendedHamiltonEquationAsLInfinityRelation}\hypertarget{nExtendedHamiltonEquationAsLInfinityRelation}{} By the discussion at [[n-plectic geometry]], a (pre-)[[n-plectic manifold]] $(X,\omega)$ induces a [[Poisson bracket Lie n-algebra]] $\mathfrak{pois}(X,\omega)$, given as follows: \begin{itemize}% \item in positive degree $k$ it has the degree $(n-k)$-[[differential forms]] on $X$ \item in degree 0 it has pairs $(v,A)$ of [[Hamiltonian n-forms]] $A$ with their [[Hamiltonian vector fields]] $v$ (such that $\mathbf{d}A = \iota_v \omega$) \end{itemize} and \begin{itemize}% \item whose [[L-infinity algebra|n-ary Lie bracket]] for $n \geq 2$ is non-trivial only on $n$-tuples of degree-0 elements, where it is given by \begin{displaymath} [(v_1, A_1), \cdots, (v_n,A_n)] = \pm \iota_{v_n}\cdots \iota_{v_1} \omega \;\;\; \in \Omega^1(X) \,, \end{displaymath} \item and whose unary Lie bracket is given by the [[de Rham differential]], $\{-\} = \mathbf{d}$. \end{itemize} This means that the $n$-extended Hamilton equation of def. \ref{ExtendedHamiltonEquations} reads in terms of the [[Poisson bracket Lie n-algebra]] equivalently thus (\hyperlink{hgp13}{hgp 13, remark 2.5.10}): \begin{displaymath} \{v_1, \cdots, v_n\} = \pm\{H\} \,. \end{displaymath} \end{remark} Let now $\Sigma$ be a [[manifold]] to be regarded as a [[spacetime]]/[[worldvolume]] and let $E \to \Sigma$ be a [[vector bundle]], to be regarded as a [[field bundle]]. Assume for simplicity of notation that both $\Sigma$ and $E$ are in fact [[Cartesian spaces]] (which is always true locally). Write $(j^1 E)^\ast$ for the coreresponding dual [[jet bundle]], equipped with the canonical ``kinetic'' [[n-plectic form]] which in local coordinates reads \begin{displaymath} \omega \coloneqq \mathbf{d}p^i_a \wedge \mathbf{d}q^a \wedge (\iota_{\partial_i} vol_\Sigma) \end{displaymath} as discussed at [[multisymplectic geometry]]. Write $\mathfrak{pois}(X,\omega)$ for the corresponding [[Poisson bracket Lie n-algebra]]. \begin{prop} \label{}\hypertarget{}{} The [[L-∞ algebra]] [[homomorphisms]] \begin{displaymath} \mathbb{R}^n \longrightarrow \mathfrak{pois}((j^1 E)^\ast, \omega) \end{displaymath} which induce the canonical map under the projection to vector fields on $\Sigma$ are [[equivalence|equivalently]] [[tuples]] consisting of \begin{itemize}% \item a [[smooth function]] $H$; \item $n$ [[vector fields]] $v_i$ \end{itemize} on $(j^1 E)^\ast$, such that the $(v_i)$ satisfy the [[de Donder-Weyl equation]] for [[Hamiltonian]] $H$ \begin{displaymath} \iota_{v_1 \cdots v_n} \omega = \pm \mathbf{d}H \,. \end{displaymath} \end{prop} \begin{proof} By the discussion at \emph{[[Maurer-Cartan element]]}, a homomorphism as indicated is equivalently an element \begin{displaymath} \mathcal{J} \in \wedge^\bullet(\mathbb{R}^n) \otimes \mathfrak{pois}(X,\omega) \end{displaymath} of total degree 1, which satifies the [[Maurer-Cartan equation]] \begin{displaymath} \sum_k \frac{1}{k!}\{\underbrace{\mathcal{J}\wedge \cdots \wedge \mathcal{J}}_{k\; factors}\} = 0 \,. \end{displaymath} If we suggestively write $\mathbf{d}\sigma^i$ for the generators of the [[Grassmann algebra]] $\wedge^\bullet(\mathbb{R}^n)$, then, by remark \ref{nExtendedHamiltonEquationAsLInfinityRelation}, $\mathcal{J}$ is of the form \begin{displaymath} \mathcal{J} = \mathbf{d}\sigma^i \otimes (v_i, J_i) + \mathbf{d}\sigma^{i_1} \wedge \mathbf{d}\sigma^{i_2} \otimes J_{i_1 i_2} + \cdots + \mathbf{d}\sigma^1 \wedge \cdots \wedge \mathbf{d}\sigma^n \otimes H \,, \end{displaymath} where the $v_i$ are vector fields on the extended phase space, \begin{displaymath} J_{i_1 \cdots i_k} \in \Omega^{n-k}((j^1 E)^\ast) \end{displaymath} and $H$ is a smooth function. Again by remark \ref{nExtendedHamiltonEquationAsLInfinityRelation}, the [[Maurer-Cartan equation]] on this element is equivalent to \begin{displaymath} \iota_{v_{i_1}} \cdots \iota_{v_{i_k}} \omega = \pm \mathbf{d} J_{i_1 \cdots i_k} \end{displaymath} for all $1 \leq k \leq n-1$ and all $\{i_j\}_{j = 1}^k$, and \begin{displaymath} \iota_{v_{1}} \cdots \iota_{v_{n}} \omega = \pm \mathbf{d} H \,. \end{displaymath} The condition on the projection means that \begin{displaymath} v_i = \frac{\partial}{\partial\sigma^i} + \frac{\partial \phi^a}{\partial \sigma^i} \frac{\partial }{\partial \phi^a} + \frac{\partial \phi^a_{,j}}{\partial \sigma^i} \frac{\partial }{\partial \phi^a_{,j}} \,. \end{displaymath} This way the last equation is the [[de Donder-Weyl equation]]. But then \begin{displaymath} J_{i_1 \cdots i_k} \coloneqq \pm H \iota_{\partial_{i_1} \cdots \partial_{i_k}} vol_\Sigma \end{displaymath} \end{proof} We can further interpret this in [[local prequantum field theory]] as follows: \begin{remark} \label{}\hypertarget{}{} By (\hyperlink{hgp13}{hgp 13}) the [[Poisson bracket Lie n-algebra]] is the [[Lie differentiation]] of the smooth [[automorphism n-group]] of any [[prequantization]] of $(X,\omega)$ by a [[prequantum n-bundle]] $\nabla$: \begin{displaymath} \itexarray{ X &\stackrel{\nabla}{\longrightarrow}& \mathbf{B}^n U(1)_{conn} \\ & {}_{\mathllap{\omega}}\searrow & \downarrow^{\mathrlap{F_{(-)}}} \\ && \mathbf{\Omega}^n_{cl} } \end{displaymath} regarded as an object in the [[slice (∞,1)-topos]] $\mathbf{H}_{/\mathbf{B}^n U(1)_{conn}}$ of that [[cohesive (∞,1)-topos]] $\mathbf{H}$ of [[smooth ∞-groupoids]], hence of the [[quantomorphism n-group]]) \begin{displaymath} QuantMorph(X,\nabla) = \mathbf{Aut}_{\mathbf{H}_{/\mathbf{B}^n U(1)_{conn}}}(\nabla) \,. \end{displaymath} In terms of this [[Lie integration|Lie integrated]] perspective, remark \ref{nExtendedHamiltonEquationAsLInfinityRelation} says that $H$-Hamitlonian $n$-vector fields are the infinitesimal [[n-morphisms]] in $\left(\mathbf{H}_{/\mathbf{B}^n U(1)_{conn}}\right)^{\Box_n}$ whose faces carry trivial labels. Here for instance for $n = 2$ a [[2-morphism]] in $\left(\mathbf{H}_{/\mathbf{B}^2 U(1)_{conn}}\right)^{\Box_2}$ looks, ``viewed from the top'', like a [[diagram]] in $\mathbf{H}$ of the form \begin{displaymath} \itexarray{ X && \stackrel{}{\longrightarrow} && X \\ & {}_{\mathllap{\nabla}}\searrow && \swarrow_{\mathrlap{\nabla}} \\ \downarrow && \mathbf{B}^2 U(1)_{conn} && \downarrow \\ & {}^{\mathllap{\nabla}}\nearrow && \nwarrow^{\mathrlap{\nabla}} \\ X && \underset{}{\longrightarrow} && X } \end{displaymath} with a big 3-[[homotopy]] filling this pyramid. The equation of remark \ref{nExtendedHamiltonEquationAsLInfinityRelation} is the [[Maurer-Cartan equation]] exhibiting an infinitesimal such situation. More in detai: the [[Lie integration]] of $\mathfrak{pois}(X,\omega)$ is a [[simplicial object]] which in simplicial degree $n$ has as elements the [[Maurer-Cartan elements]] of $\Omega^\bullet(\Sigma_n)\otimes \mathfrak{pois}(X,\omgea)$, where $\Sigma_n = \Delta^n$ is the $n$-dimensional [[simplex]], regarded as a [[smooth manifold]] (with boundaries and corners). Write then $\mathbf{d}\sigma^i$ for the canonical [[basis]] of 1-forms on $\Sigma_n$, then consider an element in there is of the form \begin{displaymath} A = \mathbf{d}\sigma^i \otimes v_i + vol \otimes H \,. \end{displaymath} This satisfying the [[Maurer-Cartan equation]] \begin{displaymath} \mathbf{d}A + [A] + [A \wedge A] + [A\wedge A \wedge A] + \cdots = 0 \end{displaymath} then is equivalent to \begin{displaymath} [\mathbf{d}\sigma^1 \otimes v_1 \wedge \cdots \wedge \mathbf{d}\sigma^1 \otimes v_1] + \underbrace{ \mathbf{d}\sigma^1 \wedge \cdots \wedge \mathbf{d}\sigma^n }_{= vol} \otimes [H] = 0 \end{displaymath} which is again the de Donder-Weyl-Hamilton equation of motion. \end{remark} \begin{prop} \label{HDWAsMaurerCartan}\hypertarget{HDWAsMaurerCartan}{} For $(X,\omega)$ a pre-[[n-plectic manifold]] and $\mathfrak{poiss}(X,\omega)$ the corresponding [[Poisson bracket Lie n-algebra]] then [[L-∞ algebra]] [[homomorphisms]] of the form \begin{displaymath} \mathbb{R}^k \longrightarrow \mathfrak{pois}(X,\omega) \end{displaymath} are in bijection to tuples consisting of $k$ [[vector fields]] $(v_1, \cdots, v_k)$ on $X$ and differential forms $\{J_{i_1 \cdots i_l}\}$ and a smooth function $H$ on $X$ such that \begin{displaymath} \iota_{v_{1_1} \cdots v_{i_l}} \omega = \pm \mathbf{d} J_{i_1 \cdots i_l} \end{displaymath} \begin{displaymath} \iota_{v_{1_1} \cdots v_{i_n}} \omega = \pm \mathbf{d} H \end{displaymath} holds. \end{prop} The following is the higher/local analog of the [[symplectic Noether theorem]]. For $(X,\omega)$ a pre-[[n-plectic manifold]], (\ldots{}) let $H \in C^\infty(X)$ be a [[smooth function]] to be regarded as a [[de Donder-Weyl Hamiltonian]] and let $(v_1, \cdots, v_n)$ be a Hamiltonian $n$-vector field, hence a solution to the Hamilton-de Donder-Weyl equation of motion. By prop. \ref{kTuplesOfCommutingDWFlows} this corresponds to an [[L-∞ algebra]] map of the form \begin{displaymath} ((v_1, \cdots, v_n), H) \;\colon\; \mathbb{R}[n-1] \longrightarrow \mathfrak{pois}(X,\omega) \,. \end{displaymath} \begin{prop} \label{}\hypertarget{}{} \textbf{(higher symplectic Noether theorem)} The extension of $((v_1, \cdots, v_n), H)$ to a homomorphism of the form \begin{displaymath} ((v_1, \cdots, v_n, v_0), H, J, \{K_i\}) \;\colon\; \mathbb{R}[n-1]\oplus \mathbb{R} \longrightarrow \mathfrak{pois}(X,\omega) \end{displaymath} is equivalently the choice of a vector field $v_0$ on $X$ such that \begin{displaymath} \iota_{v_0} \mathbf{d}H = \end{displaymath} \begin{displaymath} \iota_{v_0} \omega = \pm \mathbf{d}J \end{displaymath} \begin{displaymath} \iota_{v_1 \cdots v_n} \omega = \pm \mathbf{d}H \end{displaymath} \begin{displaymath} \iota_{v_1 \cdots v_{i-1} v_{i+1} \cdots v_n v_0} \omega = \mathbf{d} K^i \end{displaymath} \end{prop} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[de Donder-Weyl formalism]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The specific condition of def. \ref{ExtendedHamiltonEquations} appears as equation (4) in \begin{itemize}% \item [[Frédéric Hélein]], \emph{Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory} (\href{http://arxiv.org/abs/math-ph/0212036}{arXiv:math-ph/0212036}) \end{itemize} Remark \ref{nExtendedHamiltonEquationAsLInfinityRelation} appears in remark 2.5.10 of \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:Higher geometric prequantum theory]]} (\href{http://arxiv.org/abs/1304.0236}{arXiv:1304.0236}) \end{itemize} [[!redirects Hamiltonian n-vector field]] [[!redirects Hamiltonian n-vector fields]] [[!redirects Hamiltonian n-vecotr field]] [[!redirects Hamiltonian multivector field]] [[!redirects Hamiltonian multivector fields]] [[!redirects Hamiltonian multi-vector field]] [[!redirects Hamiltonian multi-vector fields]] \end{document}