\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Hamiltonian vector field} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{OnSymplecticManifolds}{On symplectic manifolds}\dotfill \pageref*{OnSymplecticManifolds} \linebreak \noindent\hyperlink{on_plectic_manifolds}{On $n$-plectic manifolds}\dotfill \pageref*{on_plectic_manifolds} \linebreak \noindent\hyperlink{OnNPlecticInfinityGroupoids}{On $n$-plectic smooth $\infty$-groupoids}\dotfill \pageref*{OnNPlecticInfinityGroupoids} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{hamiltonian_actions_and_moment_maps}{Hamiltonian actions and moment maps}\dotfill \pageref*{hamiltonian_actions_and_moment_maps} \linebreak \noindent\hyperlink{RelationToSymplectic}{Relation to symplectic vector fields}\dotfill \pageref*{RelationToSymplectic} \linebreak \noindent\hyperlink{RelationToFunctions}{Relation to functions and Poisson brackets}\dotfill \pageref*{RelationToFunctions} \linebreak \noindent\hyperlink{group_of_hamiltonian_symplectomorphisms}{Group of Hamiltonian symplectomorphisms}\dotfill \pageref*{group_of_hamiltonian_symplectomorphisms} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{OnSymplecticManifolds}{}\subsubsection*{{On symplectic manifolds}}\label{OnSymplecticManifolds} \begin{defn} \label{}\hypertarget{}{} For $(X,\omega)$ a [[symplectic manifold]], a [[vector field]] $v \in \Gamma(T X)$ is called a \textbf{Hamiltonian vector field} if its contraction with the [[differential 2-form]] $\omega$ is exact: if there exists $\alpha \in C^\infty(X)$ such that \begin{displaymath} \iota_v \omega = d \alpha \,. \end{displaymath} In this case $\alpha$ is called a [[Hamiltonian]] for $v$. \end{defn} \hypertarget{on_plectic_manifolds}{}\subsubsection*{{On $n$-plectic manifolds}}\label{on_plectic_manifolds} \begin{defn} \label{}\hypertarget{}{} For $(X,\omega)$ an [[n-plectic manifold]], a [[vector field]] $v \in \Gamma(T X)$ is called a \textbf{Hamiltonian vector field} if is contraction with the $(n+1)$-form $\omega$ is exact: there is $\alpha \in \Omega^{n-1}(X)$ such that \begin{displaymath} \iota_v \omega = d \alpha \,. \end{displaymath} In this case $\alpha$ is called a [[Hamiltonian form|Hamiltonian (n-1)-form]] for $v$. \end{defn} \hypertarget{OnNPlecticInfinityGroupoids}{}\subsubsection*{{On $n$-plectic smooth $\infty$-groupoids}}\label{OnNPlecticInfinityGroupoids} We discuss now the notion of Hamiltonian vector fields in the full generality internal to a [[cohesive (∞,1)-topos]] $\mathbf{H}$. We write out the discussion for the case $\mathbf{H} =$ [[Smooth∞Grpd]] for convenience, but any other choice of cohesive $(\infty,1)$-topos works as well. Consider the [[circle n-group]] $\mathbf{B}^{n-1}U(1)$ and the corresponding coefficient object $\mathbf{B}^n U(1)_{conn} \in \mathbf{H}$ for $U(1)$-[[differential cohomology]] in degree $(n+1)$, the smooth [[moduli stack]] of [[circle n-bundles with connection]]. For any $X \in \mathbf{H}$, a morphism $\omega \colon X \to \Omega^{n+1}_{cl}$ is a [[n-plectic geometry|pre-n-plectic structure]] on $X$. For instance $(X,\omega)$ might be a [[symplectic ∞-groupoid]]. A [[higher geometric prequantization]] of $(X,\omega)$ is a lift $\nabla$ in \begin{displaymath} \itexarray{ && \mathbf{B}^n U(1)_{conn} \\ & {}^{\mathllap{\nabla}}\nearrow & \downarrow \\ X &\stackrel{\omega}{\to}& \Omega^{n+1}_{cl} } \,. \end{displaymath} The [[quantomorphism n-group]] of this prequantization is \begin{displaymath} \mathbf{QuantMorph}(X,\omega) \coloneqq \prod_{\mathbf{B}^n U(1)_{conn}} \mathbf{Aut}(\nabla) \,, \end{displaymath} where \begin{enumerate}% \item $\mathbf{Aut}(\nabla)$ is the [[automorphism ∞-group]] of $\nabla$ formed in the [[slice (∞,1)-topos]] $\mathbf{H}_{/\mathbf{B}^n U(1)_{conn}}$ \item $\prod_{\mathbf{B}^n U(1)_{conn}} \colon \mathbf{H}_{/\mathbf{B}^n U(1)_{conn}} \to \mathbf{H}$ is the [[dependent product]] [[(∞,1)-functor]]. \end{enumerate} There is a canonical homomorphism of [[∞-groups]] \begin{displaymath} p \colon \mathbf{QuantMorph}(X,\omega) \to \mathbf{Aut}(X) \end{displaymath} to the [[automorphism ∞-group]] of $X$ (the [[diffeomorphism group]] of $X$), given as the restriction to invertible endomorphisms of the canonical morphism \begin{displaymath} \prod_{\mathbf{B}^n U(1)_{conn}} \left[ \nabla,\nabla \right] \to \left[ \sum_{\mathbf{B}^n U(1)_{conn}} \nabla, \sum_{\mathbf{B}^n U(1)_{conn}} \nabla \right] \simeq [X,X] \end{displaymath} which is discussed at \emph{\href{internal%20hom#ExampleInSliceCategories}{internal hom -- Examples -- In slice categories}}. \begin{defn} \label{}\hypertarget{}{} The [[Hamiltonian symplectomorphism n-group]] $\mathbf{HamSymp}(X,\omega)$ of $(X,\omega)$ is the [[∞-image]] of this morphism $p$, hence the factorization \begin{displaymath} p \colon \mathbf{QuantMorph}(X,\omega) \to \mathbf{HamSymp}(X,\omega) \hookrightarrow \mathbf{Aut}(X) \end{displaymath} of $p$ by an [[effective epimorphism in an (∞,1)-category|effective epimorphism]] followed by a [[monomorphism in an (∞,1)-category|monomorphism]]. The corresponding [[∞-Lie algebra]] \begin{displaymath} HamVect(X,\omega) \coloneqq Lie(\mathbf{HamSymp}(X,\omega)) \end{displaymath} we call the $\infty$-Lie algebra of \textbf{Hamiltonian vector fields} on $(X,\omega)$. \end{defn} More explicitly: \begin{defn} \label{HamiltonianDiffeomorphismsOnInfinityGroupoid}\hypertarget{HamiltonianDiffeomorphismsOnInfinityGroupoid}{} A \textbf{Hamiltonian diffeomorphism} $\phi$ on\newline on $(X, \omega)$ is an element $\phi \colon X \stackrel{\simeq}{\to} X$ in the [[automorphism ∞-group]] $\phi \in \mathbf{Aut}(X)$ such that it fits into a [[diagram]] of the form \begin{displaymath} \itexarray{ X &&\underoverset{\simeq}{\phi}{\to}&& X \\ & {}_{\mathllap{\nabla}}\searrow & \swArrow_{\alpha} & \swarrow_{\mathrlap{\nabla}} \\ && \mathbf{B}^n U(1)_{conn} } \end{displaymath} in $\mathbf{H}$. \end{defn} \begin{prop} \label{}\hypertarget{}{} For $n = 1$ and $(X, \omega)$ an ordinary prequantizable [[symplectic manifold]] regarded as a smooth $\infty$-groupoid, this definition reproduces the ordinary definition of Hamiltonian vector fields \hyperlink{OnSymplecticManifolds}{above}. In particular it is independent of the choice of [[prequantum line bundle]]. \end{prop} \begin{proof} To compute the Lie algebra of this, we need to consider smooth 1-parameter families of Hamiltonian diffeomorphisms and differentiate them. Assume first that the [[prequantum line bundle]] is trivial as a bundle, with the connection 1-form of $\nabla$ given by a globally defined $A \in \Omega^1(X)$ with $d A = \omega$. Then the existence of the diagram in def. \ref{HamiltonianDiffeomorphismsOnInfinityGroupoid} is equivalent to the condition \begin{displaymath} (\phi(t)^* A - A) = d \alpha(t) \,, \end{displaymath} where $\alpha(t) \in C^\infty(X)$. Differentiating this at 0 yields the [[Lie derivative]] \begin{displaymath} \mathcal{L}_v A = d \alpha' \,, \end{displaymath} where $v$ is the [[vector field]] of which $t \mapsto \phi(t)$ is the [[flow]] and where $\alpha' := \frac{d}{dt} \alpha$. By [[Cartan calculus]] this is equivalently \begin{displaymath} d_{\mathrm{dR}} \iota_v A + \iota_v d_{dR} A = d \alpha' \end{displaymath} and using that $A$ is the connection on a prequantum circle bundle for $\omega$ \begin{displaymath} \iota_v \omega = d (\alpha' - \iota_v A) \,. \end{displaymath} This says that for $v$ to be Hamiltonian, its contraction with $\omega$ must be exact. This is precisely the definition of Hamiltonian vector fields. The corresponding Hamiltonian function here is \begin{displaymath} h := \alpha'-\iota_v A \,. \end{displaymath} In the general case that the prequantum bundle is not trivial, we can present it by a [[Cech cohomology|Cech cocycle]] on the [[Cech nerve]] $C(P_* X \to X)$ of the based [[path space]] [[surjective submersion]] (regarding $P_* X$ as a [[diffeological space]] and choosing one base point per connected component, or else assuming without restriction that $X$ is connected). Any [[diffeomorphism]] $\phi = \exp(v) : X \to X$ lifts to a diffeomorphism $P_*\phi : P_* X \to P_* X$ by setting $P_* \phi(\gamma) : (t \in [0,1]) \mapsto \exp(t v)(\gamma(t))$. This way the Hamiltonian diffeomorphism is presented in the [[model structure on simplicial presheaves]] by a diagram \begin{displaymath} \itexarray{ C(P_*X \to X) &&\underoverset{\simeq}{\phi}{\to}&& C(P_*X \to X) \\ & {}_{\mathllap{\nabla}}\searrow & \swArrow_{\alpha} & \swarrow_{\mathrlap{\nabla}} \\ && \mathbf{B}^n U(1)_{conn} } \end{displaymath} of [[simplicial presheaves]]. Now the same argument as above applies for $P_* X$. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{hamiltonian_actions_and_moment_maps}{}\subsubsection*{{Hamiltonian actions and moment maps}}\label{hamiltonian_actions_and_moment_maps} An [[action]] of a [[Lie algebra]] by (flows of) Hamiltonian vector fields that can be lifted to a [[Hamiltonian action]] is equivalently given by a \emph{[[moment map]]}. See there for details. \hypertarget{RelationToSymplectic}{}\subsubsection*{{Relation to symplectic vector fields}}\label{RelationToSymplectic} Every Hamiltonian vector field is in particular a [[symplectic vector field]]. Where a symplectic vector field only preserves the [[symplectic form]], a Hamiltonian vector field also preserves the connection on its [[prequantum line bundle]]. \begin{prop} \label{}\hypertarget{}{} For $(X, \omega)$ a finite dimensional [[symplectic manifold]], there is an [[exact sequence]] \begin{displaymath} 0 \to HamVect(X, \omega) \to SympVect(X, \omega) \to H^1(X, \mathbb{R}) \to 0 \,. \end{displaymath} \end{prop} This appears as (\hyperlink{Brylinski}{Brylinski, 2.3.3}). \hypertarget{RelationToFunctions}{}\subsubsection*{{Relation to functions and Poisson brackets}}\label{RelationToFunctions} \begin{prop} \label{}\hypertarget{}{} Let $(X, \omega)$ be a connected [[symplectic manifold]]. Then there is a [[central extension]] of [[Lie algebras]] \begin{displaymath} 0 \to \mathbb{R} \to (C^\infty(X),\{-,-\}) \to HamVect(X,\omega) \to 0 \,. \end{displaymath} \end{prop} This is a special case of what is called the \textbf{[[Kostant-Souriau central extension]]}. See around (\hyperlink{Brylinski}{Brylinski, prop. 2.3.9}). [[!include geometric quantization extensions - table]] \hypertarget{group_of_hamiltonian_symplectomorphisms}{}\subsubsection*{{Group of Hamiltonian symplectomorphisms}}\label{group_of_hamiltonian_symplectomorphisms} The auto-[[symplectomorphisms]] on a [[symplectic manifold]] form a [[group]], of which the [[symplectic vector fields]] generate the connected component. The Hamiltonian vector fields among the symplectic ones generate the group of [[Hamiltonian symplectomorphisms]]. (\ldots{}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} The Hamiltonian vector field of a given function may also be called its \emph{[[symplectic gradient]]}. The generalization to [[multisymplectic geometry]]/[[n-plectic geometry]]: [[Hamiltonian n-vector fields]] \begin{itemize}% \item [[Hamiltonian]], [[Hamiltonian action]], [[Hamiltonian symplectomorphism]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Named after [[William Rowan Hamilton]]. A textbook reference is section II.3 in \begin{itemize}% \item [[Jean-Luc Brylinski]], \emph{Loop spaces, characteristic classes and geometric quantization}, Birkh\"a{}user. \end{itemize} For more references on the ordinary notion of Hamiltonian vector fields see the references at \emph{[[symplectic geometry]]} and \emph{[[geometric quantization]]}. The notion of Hamiltonian vector field in [[n-plectic geometry]] is discussed in \begin{itemize}% \item [[Chris Rogers]], \emph{Higher symplectic geometry} PhD thesis (2011) (\href{http://arxiv.org/abs/1106.4068}{arXiv:1106.4068}) \end{itemize} The notion of Hamiltonian vector field for $n$-plectic cohesive $\infty$-groupoids is discussed in section 4.8.1 of \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} See also at \emph{[[higher geometric quantization]]}. [[!redirects Hamiltonian vector fields]] [[!redirects hamiltonian vector field]] [[!redirects hamiltonian vector fields]] \end{document}