\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Hartogs number} [[!redirects Hartogs's number]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{foundations}{}\paragraph*{{Foundations}}\label{foundations} [[!include foundations - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{gch_implies_ac}{GCH implies AC}\dotfill \pageref*{gch_implies_ac} \linebreak \noindent\hyperlink{equivalent_forms_of_ac}{Equivalent forms of AC}\dotfill \pageref*{equivalent_forms_of_ac} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_page}{Related page}\dotfill \pageref*{related_page} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Hartogs number} of a [[cardinal number]] $\kappa$ is the number of ways to [[well-order]] a set of cardinality at most $\kappa$.\footnote{The spelling \emph{Hartogs' number}, or even \emph{Hartog's number}, is also in use. The latter based presumably on a misapprehension since the concept was originally proposed by the German mathematician Friedrich Hartogs (1874-1943) in 1915.} Assuming the [[axiom of choice]], it is the smallest [[ordinal number]] whose cardinality is greater than $\kappa$ and therefore the [[successor]] of $\kappa$ as a cardinal number. But even without the axiom of choice, it makes sense and is often an effective substitute for such a successor. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We will define the Hartogs number as a [[functor|functorial]] operation from [[sets]] to [[well-ordered sets]]. The operation on numbers is just a round-about way of talking about the same thing. So let $S$ be a set. Without the axiom of choice (or more precisely, the [[well-ordering theorem]]), it may not be possible to well-order $S$ itself, but we can certainly well-order some [[subsets]] of $S$. On the other hand, if we can well-order $S$ (or a subset), then there may be many different ways to do so, even non[[isomorphism|isomorphic]] ways. So to begin with, let us form the collection of all well-ordered subsets of $S$, that is the subset of \begin{displaymath} \coprod_{A: \mathcal{P}S} \mathcal{P}(A \times A) , \end{displaymath} where $\coprod$ indicates [[disjoint union]] and $\mathcal{P}$ indicates [[power set]], consisting of those pairs $(A,R)$ such that $R$ is a well-ordering. Then form a [[quotient set]] by identifying all well-ordered subsets that are isomorphic as well-ordered sets. This gives a set of well-order types, or [[ordinal numbers]], which can itself be well-ordered by the general theory of ordinal numbers. The \textbf{Hartogs number} of $S$ is this well-ordered set, the set of all order types of well-ordered subsets of $S$. It is denoted $\aleph(S)$. If $\kappa$ is the cardinality of $S$, then let $\kappa^+$ be the cardinality or ordinal rank (as desired) of the Hartogs number of $S$; this is called the \textbf{Hartogs number} of $\kappa$. There are other ways to encode $\aleph(S)$. A subset $A \subseteq S$ with a well-ordering can be specified through the collection of its initial segments or [[lower set|down-sets]], i.e., a suitable family of subsets of $S$ named by an [[element]] of $P P(S)$. Thus the set of well-orderings of subsets of $S$ can be defined as a suitable subset of $P P(S)$. Similarly, an equivalence class of such structures corresponding to a given order type is also definable as a subset of $P P(S)$, i.e., is named by a suitable element of $P P P(S)$, so $\aleph(S)$ which is the set of such equivalence classes is definable as a subset of $P P P(S)$. All of the defining formulas in this description involve only bounded quantification, i.e., can be expressed in the language of [[ZFC|BZC]] or in [[ETCS]]. The proof that $\aleph(S)$ is well-ordered (by existence of $P$-\href{https://ncatlab.org/nlab/show/well-founded+relation#coalgebraic_formulation}{coalgebra} morphisms between representatives of order types) can be enacted in these theories without using the axiom of choice, hence the basic theory of $\aleph(S)$ can be carried out in BZ (bounded Zermelo set theory, without choice). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{theorem} \label{}\hypertarget{}{} There is no [[injection]] $\aleph(S) \to S$. \end{theorem} This theorem is to [[Cantor's theorem]] as [[Burali-Forti's paradox]] is to [[Russell's paradox]]. This observation alone hints how the proof goes: \begin{proof} As observed before, $\aleph(S)$ is well-ordered. Suppose there were an injection $i: \aleph(S) \to S$; then $i$ gives a bijection of $\aleph(S)$ onto its image $I$. By transport of structure, $I$ uniquely admits a well-ordering for which $i$ is an isomorphism of well-ordered sets. Using this well-ordering, there is an initial segment inclusion \begin{displaymath} j: I \hookrightarrow \aleph(S) \end{displaymath} which takes $x \in I$ to (the order type of) $\{y \in I: y \lt x\}$. Since there can be at most one initial segment inclusion between well-orders (cf. \href{https://ncatlab.org/nlab/show/well-founded+relation#simulations}{simulation}), $j$ must coincide with the isomorphism $i^{-1}$, which is onto. This means $I$ itself, as an order type, must be of the form $I = \{y \in I: y \lt x\}$ for some $x \in I$, which in turn implies $x \lt x$, a contradiction. \end{proof} According to this theorem, using the usual ordering of cardinal numbers, $\kappa^+ \nleq \kappa$. So if this $\leq$ is a [[total order]] (a statement equivalent to the [[axiom of choice]]), we can say that $\kappa^+ \gt \kappa$. Even without choice, however, we can say this: If $\alpha$ is an ordinal number such that $|\alpha| \nleq \kappa$, then $\kappa^+ \leq \alpha$. (Notice that we've shifted our thinking of the Hartogs number from a cardinal to an ordinal.) That is, $\kappa^+$ is the smallest ordinal number whose cardinal number is not at most $\kappa$. This doesn't use any form of choice except for [[excluded middle]]; we only need choice to conclude that $|\kappa^+| \gt \kappa$. The axiom of choice also implies the well-ordering theorem, that any set can be well-ordered. Thus with choice, $\kappa^+$ is (now as a cardinal again) the smallest cardinal number greater than $\kappa$; this explains the notation $\kappa^+$. \hypertarget{gch_implies_ac}{}\subsubsection*{{GCH implies AC}}\label{gch_implies_ac} In [[ZF]] (without C, the [[axiom of choice]]), a set $X$ can be well-ordered if there is an injection $i: X \to \aleph(X)$, for any subset of a well-ordered set inherits a well-order. As an amusing illustration of this principle, we will prove an old result due to Sierpiski, following \hyperlink{Gill}{Gillman}: \begin{theorem} \label{}\hypertarget{}{} If the generalized [[continuum hypothesis]] holds, then the [[axiom of choice]] holds, i.e., ZF + GCH implies AC. \end{theorem} (Recall the GCH as formulated in ZF: for infinite sets $Y, Z$, if $|Y| \leq |Z| \leq |P(Y)|$, then $|Y| = |Z|$ or $|Z| = |P(Y)|$, letting $|Y|$ denote the cardinality as usual and where $|Y| \leq |Z|$ means there is a [[monomorphism]] $Y \to Z$.) \begin{proof} In fact we will show that any set $Y$ can be well-ordered, which implies AC (see the article [[Zorn's lemma]]). We start with a technical trick: any $Y$ can be embedded in a set $X$ with the property $|X| = |X + X|$ (consider for example $X = P(\mathbb{N} + Y)$), and then it suffices to well-order such $X$, since we can then pull back the well-ordering along the embedding to well-order $Y$. Iterated power sets of $X$ also have that property. Now, the Hartogs number $\aleph(X)$ can be constructed explicitly in ZF as a subset of the triple power set $P^3(X) = P P P(X)$. We will show for $n \in \{1, 2, 3\}$ that under GCH, the hypothesis $|\aleph(X)| \leq |P^n(X)|$, true for $n = 3$, leads to one of two conclusions: \begin{enumerate}% \item $|X| \leq |\aleph(X)|$ (whence $X$ can be well-ordered), or \item $|\aleph(X)| \leq |P^{n-1}(X)|$. \end{enumerate} If we land in case 2, then we loop around and feed that conclusion back into the hypothesis and iterate. Iterating this, we cannot descend through case 2 all the way down to $|\aleph(X)| \leq |P^0(X)| = |X|$, so after a few iterations we wind up in case 1 anyway: $X$ can be well-ordered. To show this, we need a spot of cardinal arithmetic in ZF. First, we already observed that any $P = P^n(X)$ for $n \geq 0$ has the property $|P| = |2P|$. Second, we \textbf{claim} \begin{itemize}% \item If $P, A$ are sets such that $|P| = |2P|$ and $|A+P| = |2^P|$, then $|2^P| \leq |A|$ \end{itemize} whose ZF-proof we give in a moment. Granting the claim, let us continue. We have \begin{displaymath} |P^{n-1}(X)| \leq |\aleph(X)| + |P^{n-1}(X)| \stackrel{hypoth}{\leq} |P^n(X)| + |P^{n-1}(X)| \leq 2|P^n(X)| = |P^n(X)| \end{displaymath} or just \begin{displaymath} |P^{n-1}(X)| \leq |\aleph(X)| + |P^{n-1}(X)| \leq |P^n(X)|. \end{displaymath} By GCH, one of those two inequalities is an equality. If the first inequality is an equality, then we conclude $|\aleph(X)| \leq |P^{n-1}(X)|$, which lands us in case 2. If the second inequality is an equality, then the claim applies and we conclude $|P^n(X)| \leq |\aleph(X)|$, in which case $|X| \leq |P^n(X)| \leq |\aleph(X)|$ and we land in case 1. So we are done except for the claim. Given bijections $A + P \cong 2^P$, $P + P \cong P$, let $f$ be the evident composite \begin{displaymath} P \stackrel{incl}{\to} A + P \cong 2^P \cong 2^{P + P} \cong 2^P \times 2^P \stackrel{\pi_1}{\to} 2^P \end{displaymath} where $\pi_1$ denotes first projection. Let $C$ be an element not in the image of $f$, e.g., $C = \{x \in P: x \notin f(x)\}$ ([[Cantor's theorem]]). It follows that under the bijection $A + P \cong 2^P \times 2^P$, those elements of $A + P$ that map to elements of the fiber $\pi_1^{-1}(\{C\})$ can only belong to the summand $A$. Thus it is a subset of $A$ that maps bijectively onto $\pi_1^{-1}(\{C\}) \cong 2^P$, and this proves $|2^P| \leq |A|$. \end{proof} \hypertarget{equivalent_forms_of_ac}{}\subsubsection*{{Equivalent forms of AC}}\label{equivalent_forms_of_ac} Methods somewhat similar to those used to prove GCH implies AC can be used to establish equivalent forms of AC. \begin{theorem} \label{}\hypertarget{}{} \textbf{(Tarski)} Over ZF (or ETCS), the axiom of choice holds iff every infinite set $Y$ can be put into bijection with its square: $Y^2 \cong Y$. \end{theorem} \begin{proof} The more interesting direction is the ``if'', so we assume every infinite set can be put into bijection with its square. It suffices to prove that every $X$ can be well-ordered. WLOG we prove this for (Dedekind) infinite $X$, since every $X$ embeds in a Dedekind infinite set (such as $X + \mathbb{N}$), and we can pull back a well-order on the latter along such an embedding to one on the former. For infinite $X$, let $Y$ be the disjoint union $X + \aleph(X)$, and let $\phi: Y \times Y \to Y$ be a bijection. We claim that for all $x \in X$, there exist $\alpha, \beta \in \aleph(X)$ such that $\phi(x, \alpha) = \beta$. If that were not true, then there would exist $x \in X$ such that for all $\alpha \in \aleph(X)$ we have $\phi(x, \alpha) \notin \aleph(X)$, or in other words for all $\alpha \in \aleph(X)$ we have $\phi(x, \alpha) \in X$, so that $\phi(x, -)$ defines an injection $\aleph(X) \rightarrowtail X$. This is impossible. By the claim, for each $x \in X$ there is a least pair $(\alpha_x, \beta_x) \in \aleph(X)^2$, considered in [[lexicographic order]], such that $\phi(x, \alpha_x) = \beta_x$. This assignment $x \mapsto (\alpha_x, \beta_x)$ defines an embedding $X \to \aleph(X)^2$ into a well-ordered set, so that $X$ inherits a well-order by restriction along the embedding, and we are done. \end{proof} A very similar method establishes the following claim. \begin{prop} \label{}\hypertarget{}{} Over ZF, AC is equivalent to the statement that every inhabited set admits a group structure. \end{prop} \begin{proof} Every inhabited finite set admits a cyclic group structure, and under AC any infinite set can be put in bijection with the collection of its finite subsets, which forms a group under symmetric difference. Conversely, suppose $Y = X + \aleph(X)$ admits a group structure. Then for every $x \in X$, there exist $\alpha, \beta \in \aleph(X)$ such that $x\alpha = \beta$. For if that were not true, then there exists $x \in X$ such that for all $\alpha \in \aleph(X)$, we have $x \alpha \notin \aleph(X)$, i.e., for all $\alpha \in \aleph(X)$ we have $x\alpha \in X$, which implies left multiplication by $x$ defines an injection $\aleph(X) \rightarrowtail X$, contradiction. So for each $x \in X$, there exists a least $(\alpha_x, \beta_x) \in \aleph(X)^2$ in lexicographic order such that $x \alpha_x = \beta_x$. This again defines an embedding $x \mapsto (\alpha_x, \beta_x)$ into a well-ordered set $\aleph(X)^2$, and we are done. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} For $n$ a [[natural number]] regarded as the cardinal number of a [[finite set]], $n^+$ is the usual [[successor]] $n + 1$. This result uses excluded middle; else we get the \emph{plump} successor of $n$, which may be rather larger. For $\aleph_0$ the cardinality of the set of all [[natural number]]s, the Hartogs number $\aleph_0^+ = \omega_1$ is the smallest [[uncountable set|uncountable]] ordinal. Assuming the axiom of choice ([[countable choice]] and excluded middle are enough), we have $\aleph_0^+ = \aleph_1$ as a cardinal. In general, we get a sequence $\omega_\alpha$ of infinite cardinalities of well-orderable sets; assuming excluded middle, every infinite well-orderable cardinality shows up in this sequence. Assuming the axiom of choice, every infinite cardinal shows up, and we have $|\omega_\alpha| = \aleph_\alpha$. (Actually, there's no real need to begin with infinite cardinals; if we started with $\omega_0 = 0$ instead of $\omega_0 = \mathbf{N}$ and $\aleph_0 = 0$ instead of $\aleph_0 = |\mathbf{N}|$, then absolutely \emph{every} cardinality or well-orderable cardinality would appear.) \hypertarget{related_page}{}\subsection*{{Related page}}\label{related_page} \begin{itemize}% \item \href{https://en.wikipedia.org/wiki/Hartogs_number}{wikipedia entry} \end{itemize} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[Lindenbaum number]] \item [[well-ordering theorem]] \item [[axiom of choice]] \item [[diagonal argument]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Friedrich Hartogs, \emph{\"U{}ber das Problem der Wohlordnung} , Math. Ann. \textbf{76} no.4 (1915) pp.438-443. (\href{http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002266105}{gdz}) \item [[Radu Diaconescu]], \emph{On Comparability in a Topos} , Proc. AMS \textbf{98} no.3 (1986) pp.389-393. (\href{http://www.ams.org/journals/proc/1986-098-03/S0002-9939-1986-0857927-9/S0002-9939-1986-0857927-9.pdf}{pdf}) \item Leonard Gillman, \emph{Two Classical Surprises Concerning the Axiom of Choice and the Continuum Hypothesis}, Amer. Math. Monthly 109 (June-July 2002), 544-553. (\href{https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/Gillman544-553.pdf}{pdf}) \end{itemize} The last section of Gillman's paper is based on Sierpiski's 1947 proof which may be found \href{http://matwbn.icm.edu.pl/ksiazki/fm/fm34/fm3411.pdf}{here}. [[!redirects Hartog's number]] [[!redirects Hartogs number]] [[!redirects Hartogs's number]] [[!redirects Hartogs' number]] [[!redirects Hartogg's number]] [[!redirects Hartog's number]] \end{document}