\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Hecke algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{generalized_hecke_algebras}{Generalized Hecke algebras}\dotfill \pageref*{generalized_hecke_algebras} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references_and_links}{References and links}\dotfill \pageref*{references_and_links} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{Hecke algebra} is a term for a class of [[algebras]]. They often appear as [[convolution algebras]] or as double [[coset spaces]]. For p-adic algebraic groups Hecke algebras often play a role similar a [[Lie algebra]] plays in the complex case (the Lie algebra still exists, but is too small). Typically the term refers to an algebra which is the [[endomorphisms]] of a [[permutation representation]] of a [[topological group]], though some liberties have been taken with this definition, and often the term means some modification of such an algebra. For example: \begin{itemize}% \item If we consider the [[general linear group]] $GL_n(\mathbb{F}_q)$ acting on the set of [[flag|complete flags]] in $\mathbb{F}_q^n$, then we obtain an algebra generated by the endomorphism $\sigma_i$ which sends the characteristic function of one flag $\mathbf{F}=\{F_1\subset \cdots \subset F_{n-1}\subset \mathbb{F}_q^n\}$ to the characteristic function of the set of flags $\mathbf{F}'$ with $F_j'=F_j$ for all $j\neq i$ and $F_i'\neq F_i$. These elements satisfy the relations\begin{displaymath} \sigma_i\sigma_{i+1}\sigma_i=\sigma_{i+1}\sigma_i\sigma_{i+1} \end{displaymath} \begin{displaymath} \sigma_i\sigma_j=\sigma_j\sigma_i \qquad (|i-j|\gt1) \end{displaymath} \begin{displaymath} \sigma_i^2=(q-1)\sigma_i+q \end{displaymath} \item If we look at $GL_n(\mathbb{F}_q(\!(t)\!))$ acting on the set of $\mathbb{F}_q[\![t]\!]$ [[lattices]] in $\mathbb{F}_q(\!(t)\!)^n$, then we will obtain the \textbf{spherical Hecke algebra}. \item A variant of the Hecke algebra is the \textbf{degenerate affine Hecke algebra} of type $A$; this is a deformation of the semidirect product of the symmetric group $S_n$ with the polynomial ring in $n$ variables. The generators are $S_n$ and $y_1, \dots, y_n$, with relations $\sigma y_i \sigma^{-1} = y_{\sigma(i)}$ and $[y_i,y_j] = \sum_{k \neq i,j} (k i j)-(k j i)$; one can replace the $y_i$`s with commuting $x_i$'s with slightly messier relations. As [[George Lusztig]] showed, the representation theory of the affine Hecke algebra is related to the graded or degenerate case. \item There is a geometric construction of the representations of Weyl algebras when realized as certain Hecke convolution algebras by [[Victor Ginzburg]]. \end{itemize} \hypertarget{generalized_hecke_algebras}{}\subsection*{{Generalized Hecke algebras}}\label{generalized_hecke_algebras} To each [[Coxeter group]] $W$ one may associate a Hecke algebra, a certain [[deformation]] of the [[group algebra]] $k[W]$ over a [[field]] $k$, as follows. $W$ is [[group presentation|presented]] by generators $\langle s_i \rangle_{i \in I}$ and relations \begin{displaymath} (s_i s_j)^{m_{i j}} = 1 \end{displaymath} where $m_{i j} = m_{j i}$ and $m_{i i} = 1$ for all $i, j \in I$. The relations may be rewritten: \begin{displaymath} s_{i}^{2} = 1, \qquad s_i s_j \ldots = s_j s_i \ldots \end{displaymath} where each of the words in the second equation alternate in the letters $s_i$, $s_j$ and has length $m_{i j}$, provided that $m_{i j} \lt \infty$. The corresponding Hecke algebra has basis $W$, and is presented by \begin{displaymath} s_{i}^{2} = \frac{q-1}{q} s_i + \frac1{q}, \qquad s_i s_j \ldots = s_j s_i \ldots \end{displaymath} These relations may be interpreted structurally as follows (for simplicity, we will consider only finite, aka spherical Coxeter groups). A Coxeter group $W$ may be associated with a suitable [[BN-pair]]; the classical example is where $G$ is an [[algebraic group]], $B$ is a [[Borel subgroup]] (maximal solvable subgroup), and $N$ is the normalizer of a [[maximal torus]] $T$ in $G$. Such $G$ typically arise as automorphism groups of thick $W$-buildings, where $B$ is a stabilizer of a point of the building. The coset space $G/B$ may then be interpreted as a space of flags for a suitable geometry. The Coxeter group itself arises as the quotient $W \cong N/T$, and under the BN-pair axioms there is a well-defined map \begin{displaymath} W \to B\backslash G/B: w \mapsto B w B \end{displaymath} which is a bijection to the set of double cosets of $B$. (In particular, the double cosets do not depend on the coefficient ring $R$ in which the points $G(R)$ are instantiated.) When one takes points of the algebraic group $G$ over the coefficient ring $\mathbb{F}_q$, a finite field with $q$ elements, the flag manifold $G_q/B_q \coloneqq G(\mathbb{F}_q)/B(\mathbb{F}_q)$ is also finite. One may calculate \begin{displaymath} \itexarray{ \hom_{k[G_q]}(k[G_q/B_q], k[G_q/B_q]) & \cong & k[G_q/B_q]^\ast \otimes_{k[G_q]} k[G_q/B_q] \\ & \cong & k[B_q\backslash G_q] \otimes_{k[G_q]} k[G_q/B_q] \\ & \cong & k[B_q\backslash G_q \otimes_{G_q} G_q/B_q] \\ & \cong & k[B_q \backslash G_q / B_q] } \end{displaymath} so that the double cosets form a linear basis of the algebra of $G_q$-equivariant operators on the space of functions $k[G_q/B_q]$. This algebra is in fact the Hecke algebra. It is a matter of interest to interpret the double cosets directly as operators on $k[G_q/B_q]$, and in particular the cosets $B s_i B$ where $s_i$ is a Coxeter generator. To be continued\ldots{} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[double Hecke algebra]] \item [[double affine Hecke algebra]] \item [[Hecke correspondence]] \item [[Hecke category]] \item [[Iwahori–Hecke algebra]] \end{itemize} \hypertarget{references_and_links}{}\subsection*{{References and links}}\label{references_and_links} \begin{itemize}% \item Secret Blogging Seminar: \href{https://sbseminar.wordpress.com/2008/02/25/interpreting-the-hecke-algebra/}{Interpreting the Hecke algebra} \item Secret Blogging Seminar: \href{https://sbseminar.wordpress.com/2009/04/09/interpreting-the-hecke-algebra-ii-the-sheafification/}{Interpreting the Hecke Algebra II: the sheafification} \end{itemize} For the representation theory of the degenerate affine Hecke algebra see \begin{itemize}% \item Takeshi Suzuki, \emph{Rogawski's conjecture on the Jantzen filtration for the degenerate affine Hecke algebra of type A}, \href{http://arxiv.org/abs/math/9805035}{math.QA/9805035} \end{itemize} \end{document}