\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Hegelian taco} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{construction}{Construction}\dotfill \pageref*{construction} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak [[!redirects taco]] [[!redirects hegelian taco]] \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{Hegelian taco} is food for thought from [[William Lawvere| William Lawvere's]] kitchen. More concretely, it is an eight-element [[graphic category|graphic monoid]] that intends to capture diagrammatically the essence of a certain configuration of stacking subcategories of a given category that occurs in Lawvere's mathematical rendering of [[Georg Hegel|Hegel's]] dialectical logic. \hypertarget{construction}{}\subsection*{{Construction}}\label{construction} The situation we start with is the following sequence of functors and adjunctions \begin{displaymath} \mathcal{A}\overset{\hookleftarrow}{\underset{\hookleftarrow}{\to}} \mathcal{B}\overset{\hookleftarrow}{\underset{\hookleftarrow}{\to}}\mathcal{C}\overset{\hookleftarrow}{\underset{\hookleftarrow}{\to}} 1 \end{displaymath} Here every column of arrows, numbered descendingly $2, 1, 0$ from left to right describes an essential localization $j_n\dashv f_n\dashv i_n$ with $j_n,i_n$ fully faithful. These yield a pair of idempotent [[adjoint modality|adjoint modalities]] whose functor parts are $j_n f_n\dashv i_n f_n$. Importantly, all the junctures vanish in the sense $f_n i_n=1$, since this composition corresponds to the inclusion of a subcategory followed by a projection back to the subcategory. If we compose the functors appropriately we obtain four such adjunctions on $\mathcal{A}$ which correspond to reflective and coreflective embeddings of descending complexity of the chain of subcategories $\mathcal{A}\supset\mathcal{B}\supset\mathcal{C}\supset 1$: \begin{displaymath} \begin{aligned} id_\mathcal{A}&\dashv id_\mathcal{A} \\ L &\dashv R \\ l &\dashv r \\ 0 &\dashv 1 \end{aligned} \end{displaymath} The respective endofunctors on $\mathcal{A}$ are defined as \begin{displaymath} \begin{aligned} 1&:=i_2 i_1 i_0 f_0 f_1 f_2 \\ 0&:=j_2 j_1 j_0 f_0 f_1 f_2 \\ r&:=i_2 i_1 f_1 f_2\\ l&:=j_2 j_1 f_1 f_2\\ R&:=i_2 f_2\\ L&:=j_2 f_2 \end{aligned} \end{displaymath} They are supposed to provide the elements of the taco monoid $M$. So far we have seven of them including $id_\mathcal{A}$. The eighth will show up when we set up the multiplication table, so let's do that: \begin{enumerate}% \item The first case we consider is when we multiply two elements that appear on the same side of $\dashv$ like e.g. $L$ and $l$ that are both left adjoints: here $l$ is of lower complexity than $L$ as it corresponds to a smaller subcategory, namely $\mathcal{C}$. When we multiply, ${l}L$ or $L{l}$, at the junctures will arise in both cases $f_2 j_2$ which is just the `splitting' of $L$ and therefore cancels and we retain the `lower' functor $l={l}L=L{l}$. This happens in all cases where we multiply elements of the same `laterality': the lower element absorbs the higher. This can be viewed as capturing the facet of `preservation' present in Hegelian [[Aufhebung]]: the higher concept $L$ is just $l$ when restricted to the smaller subcategory. \item Next we come to the cases where we multiply elements of opposite laterality of the same complexity e.g. like $L$ and $R$. Here the factors arising at the junctures cancel again and in these cases we retain always the left factor e.g. $L{R}=L$ and $R{L}=R$. One can view this as capturing the destructive nature of a Hegelian `dialogue': `objecting' $L$ to `proposal' $R$ cancels $R$ and vice versa. \item Now we come to the cases that express the constructive-progressive nature of Hegelian dialectic: namely, when we multiply elements of opposite laterality of different complexity e.g. like $R$ and $l$. Let us concentrate on the case that the difference in complexity is just a single step. First we note, that the dialogue situation is conceived of as being asymmetrical: the right adjoint acts as proponent whereas the left adjoint opponent contradicts. So in this particular formalization, the proponent tries to assimilate the opponent's view but not vice versa: in a `situation' $l{r}=l$ where the `proponent' $r$ is faced with `opposition' $l$, she might just insist $r{l}r=r{l}=r$ but she might as well try to take $l$ into account i.e. change her view $r$ to $R$, with the `higher order refinement' $R$ now `accepting' $l$ in the sense that $R{l}=l$. This relation that $L_i$ not only factors through $L_{i+1}$ but through $R_{i+1}$, is called \textbf{resolution} of (the contradiction of) level $n$ by level $n+1$ (For further details see at [[Aufhebung]]). It gives us the equations ${r}0=0$ , $R{l}=l$, and (trivially) $id {L}=L$ for the three steps of sublations. \end{enumerate} As we've said, the situation is handled somewhat asymmetrical in that we systematically care only that we can incorporate the negative view into the positive `right adjoint' view but not the reverse. For the reverse cases ${l}1$ and ${L}r$ we \emph{stipulate}: 1) ${l}1=1$ (this would hold, as often occurs in the applications, that there is an additional left adjoint $\pi\dashv j_2j_1\dashv f_1f_2$ since in that case $l$ as a composition of right adjoints would preserve the limit $1$) and 2.) $q:={L}r$ which give us our eighth element! So much for the `philosophical' motivation behind the multiplication table that is going to follow in the next section! Some might feel more comfortable with the information that, technically, the taco monoid intends to abstract the relations occuring between three essential localizations such that, starting from $0\dashv 1$, a higher localization resolves the preceding lower level in the sense that $R_{n+1} L_n= L_n$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The \emph{Hegelian taco} is the monoid on the set $\{id,0,1,l,r,L,R,q\}$ with the following multiplication table: \begin{displaymath} \itexarray{ && 0 & 1 & l & q & r & L & R & id \\ &&&&&&&&&\\ 0 && 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 && 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ l && 0 & 1 & l & l & l & l & l & l \\ q && 0 & 1 & q & q & q & q & q & q \\ r && 0 & 1 & r & r & r & r & r & r \\ L && 0 & 1 & l & q & q & L & L & L \\ R && 0 & 1 & l & r & r & R & R & R \\ id&& 0 & 1 & l & q & r & L & R & id } \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} $M$ is a [[graphic category|graphic monoid]] i.e. for all $x,y\in M$ we have $x y x=x y$, in particular all elements are [[idempotent]]. The poset of left ideals in $M$ is: \begin{displaymath} \emptyset\subset \{ 0,1 \} \subset \{ 0,1,l,q,r \} \subset \{ 0,1,l,q,r,L,R \} \subset \{ 0,1,l,r,L,R,id \} \end{displaymath} They parametrize the essential localizations of the associated presheaf topos $Set^{M^{op}}$. The dimension theory that comes with this is detailed in \hyperlink{Kl89}{Kelly-Lawvere (1989)} and \hyperlink{Law89b}{Lawvere (1989)}. In the present case, the result is that $Set^{M^{op}}$ is three-dimensional. This motivates also the culinary allusion in the name, where the essential localization corresponding to $\mathcal{B}$ is seen as providing the two-dimensional `sides' via its reflective and coreflective inclusions around the three-dimensional `filling' $\mathcal{A}$. Of course, the one-dimensional pieces $l,q,r$ corresponding to $\mathcal{C}$ find their place on the sandwich as well. The following picture of the taco appears in \hyperlink{Law89b}{Lawvere (1989)}, where further details may be found. [[Hegel\_taco.png:pic]] Let us point out that $M$ can be viewed as `cubical generalization' of the three-element graphic monoid $\Delta_1$ that underlies the (one-dimensional) presheaf topos of [[reflexive graph|reflexive graphs]] (for a detailed description of $\Delta_1$ and its topos see at [[graphic category]]). $\Delta_1$ encapsulates the diagram \begin{displaymath} \mathcal{A}\overset{\hookleftarrow}{\underset{\hookleftarrow}{\to}} \mathcal{B} \end{displaymath} that expresses abstractly a [[adjoint cylinder|cylinder configuration]] corresponding to `opposition' or `conflict' from the dialogical point of view.\footnote{Lawvere expands a bit on the diagrammatic perspective on $\Delta_1$ in \hyperlink{Law96}{Lawvere (1996)}.} \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \begin{itemize}% \item If one takes into account also the natural transformations arising from the adjunctions one can turn $M$ into a finite [[monoidal category]]. \item The main reference for the taco is \hyperlink{Law89b}{Lawvere (1989, pp.70-73)}. It is mentioned in Lawvere (\hyperlink{Law91}{1991},\hyperlink{Law02}{2003}) as well. \end{itemize} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[graphic category]] \item [[graphic topos]] \item [[shelf]] \item [[Aufhebung]] \item [[graph]] \item [[Science of Logic]] \item [[adjoint cylinder]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[G. M. Kelly]], [[F. W. Lawvere]], \emph{On the complete lattice of essential localizations} , Bull. Soc. Math. de Belgique \textbf{XLI} (1989) pp.289-319. (\href{https://github.com/mattearnshaw/lawvere/blob/master/pdfs/1988-on-the-complete-lattice-of-essential-localizations.pdf}{pdf}) \item [[F. W. Lawvere]], \emph{Display of graphics and their applications, as exemplified by 2-categories and the Hegelian ``taco''} Proceedings of the first international conference on algebraic methodology and software technology University of Iowa, May 22-24 1989, Iowa City, pp. 51-74. (\href{https://github.com/mattearnshaw/lawvere/blob/master/pdfs/1989-display-of-graphics-and-their-applications-exemplifed-by-2-categories-and-the-hegelian-taco.pdf}{pdf}) \item [[F. W. Lawvere]], \emph{More on graphic toposes}, Cah. Top. G\'e{}om. Diff. Cat. \textbf{XXXII} no. 1 (1991) pp.5-10. (\href{http://archive.numdam.org/article/CTGDC_1991__32_1_5_0.pdf}{pdf}) \item [[F. W. Lawvere]], \emph{Unity and identity of opposites in calculus and physics} , App. Cat. Struc \textbf{4} (1996) pp.167-174. (\href{https://github.com/mattearnshaw/lawvere/blob/master/pdfs/1996-unity-and-identity-of-opposites-in-calculus-and-physics.pdf}{pdf}) \item [[F. W. Lawvere]], \emph{Linearization of graphic toposes via Coxeter groups}, JPAA \textbf{168} (2002) pp. 425-436. (\href{http://www.sciencedirect.com/science/article/pii/S0022404901001074/pdfft?md5=a4ca9bc67df6ae63ddf53c559bd71315&pid=1-s2.0-S0022404901001074-main.pdf}{pdf}) \end{itemize} \end{document}