\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Heine-Borel theorem} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{analysis}{}\paragraph*{{Analysis}}\label{analysis} [[!include analysis - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{versions}{Versions}\dotfill \pageref*{versions} \linebreak \noindent\hyperlink{logical_status}{Logical status}\dotfill \pageref*{logical_status} \linebreak \noindent\hyperlink{Proofs}{Proofs}\dotfill \pageref*{Proofs} \linebreak \noindent\hyperlink{related_theorem}{Related theorem}\dotfill \pageref*{related_theorem} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The classical \emph{Heine--Borel theorem} identifies those [[topological subspaces]] of [[Cartesian spaces]] ($\mathbb{R}^n$s) that are [[compact space|compact]] in terms of simpler properties. A generalisation applies to all [[metric spaces]] and even to [[uniform spaces]]. \hypertarget{versions}{}\subsection*{{Versions}}\label{versions} This is the classical theorem: \begin{theorem} \label{classical}\hypertarget{classical}{} Let $S$ be a [[topological subspace]] of a [[Cartesian space]] ($S \subset \mathbb{R}^n$). Then $S$ is a [[compact topological space]] (with the [[induced topology]]) precisely if it is [[closed subset|closed]] and [[bounded subset|bounded]] in $\mathbb{R}^n$. \end{theorem} It's easy to prove that $S$ is closed precisely if it is a [[complete metric space]] as with the induced [[metric]], and similarly $S$ is bounded precisely if it is [[totally bounded metric space|totally bounded]]. This gives the next version: \begin{theorem} \label{cartesian}\hypertarget{cartesian}{} Let $S$ be a [[topological subspace]] of a [[Cartesian space]] ($S \subset \mathbb{R}^n$). Then $S$ is a [[compact topological space]] (with the [[induced topology]]) precisely if it is [[complete space|complete]] and [[totally bounded space|totally bounded]] (with the [[induced metric]]). \end{theorem} This refers entirely to $S$ as a metric space in its own right. In fact it holds much more generally than for subspaces of a cartesian space: \begin{theorem} \label{metric}\hypertarget{metric}{} Let $S$ be a [[metric space]]. Then $S$ is [[compact space|compact]] precisely if it is [[complete space|complete]] and [[totally bounded space|totally bounded]]. \end{theorem} This theorem refers only to uniform properties of $S$, and in fact a further generalistion is true: \begin{theorem} \label{uniform}\hypertarget{uniform}{} Let $S$ be a [[uniform space]]. Then $S$ is [[compact space|compact]] precisely if it is [[complete space|complete]] and [[totally bounded space|totally bounded]]. \end{theorem} The hard part is proving that a complete totally bounded space is compact; the converse is easy. We could also try to generalise Theorem \ref{classical} to subspaces of other metric spaces, but this fails: every compact subspace of a metric space is closed and bounded (which is the easy direction), but not conversely. Another variant of these statements is: \begin{itemize}% \item \emph{[[closed subspaces of compact Hausdorff spaces are equivalently compact subspaces]]} \end{itemize} \hypertarget{logical_status}{}\subsection*{{Logical status}}\label{logical_status} In the old days, one called a closed and bounded [[interval]] in the [[real line]] `compact'; once closedness and boundedness were generalised from intervals to arbitrary [[subsets]] (of the real line), the definition of `compact' also generalised. The content of Theorem \ref{classical}, then, is that this condition is equivalent to the modern definition of `compact' using [[open covers]], and indeed the modern definition was only derived afterwards as a name for the conclusion of the theorem. In [[constructive mathematics]], one sees several definitions of `compact', which may make the theorem provable, refutable, or undecidable in various constructive systems. Using the open-cover definition of `compact', Theorems \ref{classical} and \ref{cartesian} are equivalent to the [[fan theorem]] (and so hold in [[intuitionism]]), but Theorems \ref{metric} and \ref{uniform} are stronger and [[Jan Brouwer|Brouwer]] could not prove them, leading him to \emph{define} `compact' (for a metric space) to mean complete and totally bounded. In other literature, one sometimes sees the abbreviation `CTB' used instead. In [[Russian constructivism]], already Theorems \ref{classical} and \ref{cartesian} can be refuted using the open-cover definition, but CTB spaces are still important. In [[locale theory]] and other approaches to [[pointless topology]], the open-cover definition of `compact' is clearly correct, and the failure of CTB spaces to be compact (constructively) may be seen as a consequence of working with points. Already in Bishop's weak system of constructivism, every CTB metric space $X$ gives rise to a compact locale, which classically (assuming [[excluded middle]] and [[dependent choice]]) is the [[locale of open subsets]] of $X$ but constructively requires a more nuanced construction; see \hyperlink{CTBlocale}{Vickers}. \hypertarget{Proofs}{}\subsection*{{Proofs}}\label{Proofs} For definiteness, we restate the versions which we prove: \begin{lemma} \label{CompactClosedInterval}\hypertarget{CompactClosedInterval}{} \textbf{(closed interval is compact)} In [[classical mathematics]]: For any $a \lt b \in \mathbb{R}$ the [[closed interval]] \begin{displaymath} [a,b] \subset \mathbb{R} \end{displaymath} regarded with its [[topological subspace|subspace topology]] is a [[compact topological space]]. \end{lemma} \begin{proof} Since all the closed intervals are [[homeomorphism|homeomorphic]] it is sufficient to show the statement for $[0,1]$. Hence let $\{U_i \subset [0,1]\}_{i \in I}$ be an open cover. We need to show that it has an open subcover. Say that an element $x \in [0,1]$ is \emph{admissible} if the closed sub-interval $[0,x]$ is covered by finitely many of the $U_i$. In this terminlogy, what we need to show is that $1$ is admissible. Observe from the definition that \begin{enumerate}% \item 0 is admissible, \item if $y \lt x \in [0,1]$ and $x$ is admissible, then also $y$ is admissible. \end{enumerate} This means that the set of admissible $x$ forms either an [[open interval]] $[0,g)$ or a [[closed interval]] $[0,g]$, for some $g \in [0,1]$. We need to show that the latter is true, and for $g = 1$. We do so by observing that the alternatives lead to contradictions: \begin{enumerate}% \item Assume that the set of admissible values were an open interval $[0,g)$. By assumption there would be a finite subset $J \subset I$ such that $\{U_i \subset [0,1] \}_{i \in J \subset I}$ were a finite open cover of $[0,g)$. Accordingly, since there is some $i_g \in I$ such that $g \in U_{i_g}$, the union $\{U_i\}_{i \in J } \sqcup \{U_{i_g}\}$ were a finite cover of the closed interval $[0,g]$, contradicting the assumption that $g$ itself is not admissible (since it is not contained in $[0,g)$). \item Assume that the set of admissible values were a closed interval $[0,g]$ for $g \lt 1$. By assumption there would then be a finite set $J \subset I$ such that $\{U_i \subset [0,1]\}_{i \in J \subset I}$ were a finite cover of $[0,g]$. Hence there would be an index $i_g \in J$ such that $g \in U_{i_g}$. But then by the nature of open subsets in the Euclidean space $\mathbb{R}$, this $U_{i_g}$ would also contain an open ball $B^\circ_g(\epsilon) = (g-\epsilon, g + \epsilon)$. This would mean that the set of admissible values includes the open interval $[0,g+ \epsilon)$, contradicting the assumption. \end{enumerate} This gives a [[proof by contradiction]]. \end{proof} \begin{prop} \label{BorelHeine}\hypertarget{BorelHeine}{} \textbf{([[Heine-Borel theorem]] classically)} For $n \in \mathbb{N}$, regard $\mathbb{R}^n$ as the $n$-dimensional [[Euclidean space]], regarded as a [[topological space]] via its [[metric topology]]. Then in [[classical mathematics]] for a [[topological subspace]] $S \subset \mathbb{R}^n$ the following are equivalent: \begin{enumerate}% \item $S$ is [[compact topological space|compact]], \item $S$ is [[closed subset|closed]] and [[bounded subset|bounded]]. \end{enumerate} \end{prop} \begin{proof} First consider a [[subset]] $S \subset \mathbb{R}^n$ which is closed and bounded. We need to show that regarded as a [[topological subspace]] it is [[compact topological space|compact]]. The assumption that $S$ is bounded by (hence contained in) some [[open ball]] $B^\circ_x(\epsilon)$ in $\mathbb{R}^n$ implies that it is contained in $\{ (x_i)_{i = 1}^n \in \mathbb{R}^n \,\vert\, -\epsilon \leq x_i \leq \epsilon \}$. This topological subspace is homeomorphic to the $n$-cube $[-\epsilon, \epsilon]^n$. Since the closed interval $[-\epsilon, \epsilon]$ is compact by lemma \ref{CompactClosedInterval}, the [[Tychonoff theorem]] implies that this $n$-cube is compact. Since [[subsets are closed in a closed subspace precisely if they are closed in the ambient space]] the closed subset $S \subset \mathbb{R}^n$ is still closed as a subset $S \subset [-\epsilon, \epsilon]^n$. Since [[closed subspaces of compact spaces are compact]] this implies that $S$ is compact. Conversely, assume that $S \subset \mathbb{R}^n$ is a compact subspace. We need to show that it is closed and bounded. The first statement follows since the [[Euclidean space]] $\mathbb{R}^n$ is [[Hausdorff topological space|Hausdorff]] and since [[compact subspaces of Hausdorff spaces are closed]]. Hence what remains is to show that $S$ is bounded. To that end, choose any [[positive number|positive]] [[real number]] $\epsilon \in \mathbb{R}_{\gt 0}$ and consider the [[open cover]] of all of $\mathbb{R}^n$ by the open [[n-cubes]] \begin{displaymath} (k_1-\epsilon, k_1+1+\epsilon) \times (k_2-\epsilon, k_2+1+\epsilon) \times \cdots \times (k_n-\epsilon, k_n+1+\epsilon) \end{displaymath} for [[n-tuples]] of [[integers]] $(k_1, k_2 , \cdots, k_n ) \in \mathbb{Z}^n$. The restrictions of these to $S$ hence form an open cover of the subspace $S$. By the assumption that $S$ is compact, there is then a finite subset of $n$-tuples of integers such that the corresponding $n$-cubes still cover $S$. But the union of any finite number of bounded closed $n$-cubes in $\mathbb{R}^n$ is clearly a bounded subset, and hence so is $S$. \end{proof} \hypertarget{related_theorem}{}\subsection*{{Related theorem}}\label{related_theorem} \begin{itemize}% \item [[closed subspaces of compact Hausdorff spaces are equivalently compact subspaces]] \item [[Tietze extension theorem]] \item [[Tychonoff theorem]] \item [[topological invariance of dimension]] \item [[Brouwer's fixed point theorem]] \item [[Jordan curve theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \href{https://en.wikipedia.org/wiki/Heine%E2%80%93Borel_theorem#History_and_motivation}{According to Wikipedia}, the theorem was first proved by [[Pierre Cousin]] in 1895. It is named after [[Eduard Heine]] (who used it but did not prove it) and [[Émile Borel]] (who proved a limited version of it), an instance of [[Baez's law]]. A proof is spelled out for instance at \begin{itemize}% \item \href{http://www.proofwiki.org/wiki/Main_Page}{ProofWiki}, \emph{Heine-Borel Theorem \href{http://www.proofwiki.org/wiki/Heine-Borel_Theorem_%28General_Case%29}{(General case)}, \href{http://www.proofwiki.org/wiki/Heine-Borel_Theorem_%28Special_Case%29}{(Special case)}} \end{itemize} On constructing a compact locale from a CTB metric space: \begin{itemize}% \item [[Steve Vickers]], \href{http://www.tac.mta.ca/tac/volumes/14/15/14-15abs.html}{Localic completion of generalized metric spaces} \end{itemize} [[!redirects Heine-Borel theorem]] [[!redirects Heine-Borel theorems]] [[!redirects Heine--Borel theorem]] [[!redirects Heine--Borel theorems]] [[!redirects Heine–Borel theorem]] [[!redirects Heine–Borel theorems]] \end{document}