\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Henstock integral} \hypertarget{the_henstock_integral}{}\section*{{The Henstock integral}}\label{the_henstock_integral} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{the_fundamental_theorem_of_calculus}{The fundamental theorem of calculus}\dotfill \pageref*{the_fundamental_theorem_of_calculus} \linebreak \noindent\hyperlink{hakes_theorem}{Hake's theorem}\dotfill \pageref*{hakes_theorem} \linebreak \noindent\hyperlink{recovery_of_riemann_and_lebesgue_integrals}{Recovery of Riemann and Lebesgue integrals}\dotfill \pageref*{recovery_of_riemann_and_lebesgue_integrals} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Henstock integral} (also attributed to \emph{Kurzweil}, \emph{Denjoy}, \emph{Luzin}, and \emph{Perron}, and sometimes called, neutrally but perhaps ambiguously, the \emph{gauge integral}) is a way to define the [[integral]] of a (partial) function $f:\mathbb{R}\to \mathbb{R}$ which applies to more functions than either the [[Riemann integral]] or the [[Lebesgue integral]] and is in some ways better behaved as well. For instance, the (even) function \begin{displaymath} t\mapsto \frac{\sin(1/t^3)}{t},\quad t \in \mathbb{R}\setminus\{0\} \end{displaymath} is not Lebesgue integrable on any interval containing 0, but it has ([[David Roberts|DR]]: according to WolframAlpha) Henstock integral \begin{displaymath} \int_{0}^x \frac{\sin (1/t^3)}{t} = \frac{1}{3}\left( \pi - 2 Si(1/x^3)\right) \end{displaymath} where $Si(x)$ is the [[sine integral]] $\int_0^x \frac{\sin(t)}{t}dt$ (note that $Si$ extends to an [[entire function]] on $\mathbb{C}$). However, the Lebesgue integral is more commonly used by working mathematicians because it fits more naturally into the general theory of [[measure]], while the Riemann/Darboux integral is more commonly used in introductory calculus courses because its definition is simpler. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $[a,b]$ be a closed [[interval]] in $\mathbb{R}$ and let $f:[a,b]\to \mathbb{R}$. A \emph{tagged partition} $P$ of $[a,b]$ is a finite sequence of points $a = u_0 \lt u_1 \lt \dots \lt u_{n+1} = b$ together with points $t_i \in [u_i, u_{i+1}]$ for all $i$. The \emph{Riemann sum} of $f$ over such a tagged partition is \begin{displaymath} \sum_P f = \sum_{i=0}^{n} f(t_i) \cdot (u_{i+1} - u_{i}). \end{displaymath} Define a \emph{gauge} on $[a,b]$ to be any function $\delta: [a,b] \to (0,\infty)$. We say that a tagged partition is \emph{$\delta$-fine} if $[u_i, u_{i+1}] \subset (t_i - \delta(t_i), t_i + \delta(t_i))$. Finally, we say that $I$ is the \textbf{integral} of $f$ on $[a,b]$, written $I = \int_{a}^b f(x) d x$, if for any $\epsilon\gt 0$ there exists a gauge $\delta$ such that \begin{displaymath} {| \sum_P f - I |} \lt \epsilon \end{displaymath} for any $\delta$-fine partition $P$. If such an $I$ exists, we say that $f$ is (Henstock) \textbf{integrable} on $[a,b]$. If we require a gauge to be a [[constant function]], then we recover the definition of the [[Riemann integral]]. The Henstock integral may be seen as a non-uniform generalization of the Riemann integral. Whereas specifying a constant $\delta$ is tantamount to picking an [[entourage]] on $[a,b]$, specifying a gauge $\delta$ is tantamount to assigning a [[neighbourhood]] to each point in $[a,b]$. (Indeed, with either definition of integral, it would be equivalent to replace $\delta$ in the definition with an entourage or an assignment of neighbourhoods.) Similarly, the definition of [[uniformly continuous function]] becomes that of [[continuous function]] if you change $\delta$ from a constant to a gauge. In [[constructive mathematics]], we must allow a gauge to take [[lower real number|lower semicontinuous]] values. (This is not necessary with the Riemann integral.) Otherwise, there may not be enough gauges, since these are rarely continuous. (The definition could also be made constructive by explicitly referring to an assignment of neighbourhoods to points or by replacing $\delta$ with an [[entire relation]]. Again compare the change from the definition of uniformly continuous to pointwise-continuous function.) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{the_fundamental_theorem_of_calculus}{}\subsubsection*{{The fundamental theorem of calculus}}\label{the_fundamental_theorem_of_calculus} The Henstock integral satisfies a very nice form of the [[fundamental theorem of calculus]]: \begin{utheorem} If $f$ is differentiable on $[a,b]$, then $f'$ is Henstock integrable on $[a,b]$, and $\int_a^b f'(x) d x = f(b) - f(a)$. \end{utheorem} \begin{utheorem} If $f$ is Henstock integrable on $[a,b]$, then $F(x) = \int_a^x f(t) d t$ is differentiable [[almost everywhere]] on $[a,b]$ and $F' = f$. \end{utheorem} \hypertarget{hakes_theorem}{}\subsubsection*{{Hake's theorem}}\label{hakes_theorem} \begin{utheorem} For any $f$ we have \begin{displaymath} \int_a^b f(x) d x = \lim_{c\to b^-} \int_a^c f(x) d x \end{displaymath} in the strong sense that if either side exists, then so does the other, and they are equal. \end{utheorem} In particular, what is often taken as a \emph{definition} of the [[improper integral|improper]] Riemann integral (of a potentially unbounded function on a finite interval) is actually a \emph{theorem} for Henstock integrals. (However, we still need improper Henstock integrals to allow $a = -\infty$ or $b = \infty$.) \hypertarget{recovery_of_riemann_and_lebesgue_integrals}{}\subsubsection*{{Recovery of Riemann and Lebesgue integrals}}\label{recovery_of_riemann_and_lebesgue_integrals} I need to check some of the claims below, but I'm out of time right now. They are definitely correct for the proper integrals. ---Toby Recall that $f\colon [a, b] \to \mathbb{R}$ is Riemann integrable iff $f$ is continuous almost everywhere and bounded; in this case, $f$ is also Henstock integrable, and the Riemann integral of $f$ equals its Henstock integral. More generally, $f$ is improperly Riemann integrable iff $f$ is Henstock integrable and $f$ is locally Riemann integrable at all but finitely many points in $[a, b]$; then the improper Riemann integral of $f$ equals its Henstock integral. Still more generally, $f\colon \mathbb{R} \to \mathbb{R}$ is improperly Riemann integrable iff $f$ is improperly Henstock integrable (meaning merely that \begin{displaymath} \lim_{a \to -\infty, b \to \infty} \int_a^b f(x) \,\mathrm{d}x \end{displaymath} exists using Henstock integrals) and locally Riemann integrable except at a set of [[isolated point]]s; then the improper Riemann integral of $f$ equals its improper Henstock integral. Finally (and with incomparable generality), $f\colon \mathbb{R} \to \mathbb{R}$ is Lebesgue integrable iff ${|f|}$ is improperly Henstock integrable; then the Lebesgue integral of $f$ equals its improper Henstock integral (which is proper if the [[support]] of $f$ is [[bounded set|bounded]], of course). [[!redirects Henstock integral]] [[!redirects Henstock integrals]] [[!redirects Henstock integrable]] [[!redirects Henstock-integrable]] [[!redirects Henstock integrable function]] [[!redirects Henstock integrable functions]] [[!redirects Henstock-integrable function]] [[!redirects Henstock-integrable functions]] [[!redirects Kurzweil integral]] [[!redirects Kurzweil integrals]] [[!redirects Kurzweil integrable]] [[!redirects Kurzweil-integrable]] [[!redirects Kurzweil integrable function]] [[!redirects Kurzweil integrable functions]] [[!redirects Kurzweil-integrable function]] [[!redirects Kurzweil-integrable functions]] [[!redirects Henstock-Kurzweil integral]] [[!redirects Henstock-Kurzweil integrals]] [[!redirects Henstock–Kurzweil integral]] [[!redirects Henstock–Kurzweil integrals]] [[!redirects Henstock--Kurzweil integral]] [[!redirects Henstock--Kurzweil integrals]] [[!redirects Henstock-Kurzweil integrable function]] [[!redirects Henstock-Kurzweil integrable functions]] [[!redirects Henstock–Kurzweil integrable function]] [[!redirects Henstock–Kurzweil integrable functions]] [[!redirects Henstock--Kurzweil integrable function]] [[!redirects Henstock--Kurzweil integrable functions]] [[!redirects Kurzweil-Henstock integral]] [[!redirects Kurzweil-Henstock integrals]] [[!redirects Kurzweil–Henstock integral]] [[!redirects Kurzweil–Henstock integrals]] [[!redirects Kurzweil--Henstock integral]] [[!redirects Kurzweil--Henstock integrals]] [[!redirects Kurzweil-Henstock integrable function]] [[!redirects Kurzweil-Henstock integrable functions]] [[!redirects Kurzweil–Henstock integrable function]] [[!redirects Kurzweil–Henstock integrable functions]] [[!redirects Kurzweil--Henstock integrable function]] [[!redirects Kurzweil--Henstock integrable functions]] [[!redirects Denjoy integral]] [[!redirects Denjoy integrals]] [[!redirects Denjoy integrable function]] [[!redirects Denjoy integrable functions]] [[!redirects Luzin integral]] [[!redirects Luzin integrals]] [[!redirects Luzin integrable function]] [[!redirects Luzin integrable functions]] [[!redirects Perron integral]] [[!redirects Perron integrals]] [[!redirects Perron integrable function]] [[!redirects Perron integrable functions]] [[!redirects gauge integral]] [[!redirects gauge integrals]] [[!redirects gauge integrable]] [[!redirects gauge-integrable]] [[!redirects gauge integrable function]] [[!redirects gauge integrable functions]] [[!redirects gauge-integrable function]] [[!redirects gauge-integrable functions]] \end{document}