\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Higher Algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] This entry collects links related to the book \begin{itemize}% \item [[Jacob Lurie]], \emph{Higher Algebra} (\href{http://www.math.harvard.edu/~lurie/papers/HA.pdf}{pdf}) \end{itemize} on [[higher algebra]]. This book lays the basis of [[categorical algebra]] -- the study of the trinity [[Lawvere theory|algebra]], [[monads]], [[operads]] -- in the context of [[(∞,1)-category theory]]: [[(∞,1)-algebraic theory|(∞,1)-algebras]], [[(∞,1)-monad]]s, [[(∞,1)-operad]]s. In particular it discusses the analogs of [[abelian groups]] and [[commutative rings]], namely [[abelian ∞-groups]], [[spectra]] and [[E-∞ rings]]. \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{1_stable_categories}{1. Stable $\infty$-categories}\dotfill \pageref*{1_stable_categories} \linebreak \noindent\hyperlink{11_foundations}{1.1 Foundations}\dotfill \pageref*{11_foundations} \linebreak \noindent\hyperlink{111_stability}{1.1.1 Stability}\dotfill \pageref*{111_stability} \linebreak \noindent\hyperlink{112_the_homotopy_category_of_a_stable_category}{1.1.2 The homotopy category of a stable $\infty$-category}\dotfill \pageref*{112_the_homotopy_category_of_a_stable_category} \linebreak \noindent\hyperlink{113_closure_properties_of_stable_categories}{1.1.3 Closure properties of stable $\infty$-categories}\dotfill \pageref*{113_closure_properties_of_stable_categories} \linebreak \noindent\hyperlink{114_exact_functors}{1.1.4 Exact functors}\dotfill \pageref*{114_exact_functors} \linebreak \noindent\hyperlink{12_stable_categories_and_homological_algebra}{1.2 Stable $\infty$-categories and homological algebra}\dotfill \pageref*{12_stable_categories_and_homological_algebra} \linebreak \noindent\hyperlink{121_tstructures_on_stable_categories}{1.2.1 t-Structures on stable $\infty$-categories}\dotfill \pageref*{121_tstructures_on_stable_categories} \linebreak \noindent\hyperlink{122_filtered_objects_and_spectral_sequences}{1.2.2 Filtered objects and spectral sequences}\dotfill \pageref*{122_filtered_objects_and_spectral_sequences} \linebreak \noindent\hyperlink{123_the_doldkan_correspondence}{1.2.3 The Dold-Kan correspondence}\dotfill \pageref*{123_the_doldkan_correspondence} \linebreak \noindent\hyperlink{124_the_categorical_doldkan_correspondence}{1.2.4 The $\infty$-categorical Dold-Kan correspondence}\dotfill \pageref*{124_the_categorical_doldkan_correspondence} \linebreak \noindent\hyperlink{13_homological_algebra_and_derived_categories}{1.3 Homological algebra and derived categories}\dotfill \pageref*{13_homological_algebra_and_derived_categories} \linebreak \noindent\hyperlink{131_nerves_of_differential_graded_categories}{1.3.1 Nerves of differential graded categories}\dotfill \pageref*{131_nerves_of_differential_graded_categories} \linebreak \noindent\hyperlink{132_derived_categories}{1.3.2 Derived $\infty$-categories}\dotfill \pageref*{132_derived_categories} \linebreak \noindent\hyperlink{133_the_universal_property_of_}{1.3.3 The universal property of $\mathcal{D}^-(\mathcal{A})$}\dotfill \pageref*{133_the_universal_property_of_} \linebreak \noindent\hyperlink{134_inverting_quasiisomorphisms}{1.3.4 Inverting Quasi-isomorphisms}\dotfill \pageref*{134_inverting_quasiisomorphisms} \linebreak \noindent\hyperlink{135_grothendieck_abelian_categories}{1.3.5 Grothendieck abelian categories}\dotfill \pageref*{135_grothendieck_abelian_categories} \linebreak \noindent\hyperlink{136_complexes_of_injective_objects}{1.3.6 Complexes of injective objects}\dotfill \pageref*{136_complexes_of_injective_objects} \linebreak \noindent\hyperlink{14_spectra_and_stabilization}{1.4 Spectra and stabilization}\dotfill \pageref*{14_spectra_and_stabilization} \linebreak \noindent\hyperlink{141_the_brown_representability_theorem}{1.4.1 The Brown representability theorem}\dotfill \pageref*{141_the_brown_representability_theorem} \linebreak \noindent\hyperlink{142_spectrum_objects}{1.4.2 Spectrum objects}\dotfill \pageref*{142_spectrum_objects} \linebreak \noindent\hyperlink{143_the_category_of_spectra}{1.4.3 The $\infty$-category of spectra}\dotfill \pageref*{143_the_category_of_spectra} \linebreak \noindent\hyperlink{144_presentable_stable_categories}{1.4.4 Presentable stable $\infty$-categories}\dotfill \pageref*{144_presentable_stable_categories} \linebreak \noindent\hyperlink{2_operads}{2. $\infty$-Operads}\dotfill \pageref*{2_operads} \linebreak \noindent\hyperlink{21_foundations}{2.1 Foundations}\dotfill \pageref*{21_foundations} \linebreak \noindent\hyperlink{211_from_colored_operads_to_operads}{2.1.1 From colored operads to $\infty$-operads}\dotfill \pageref*{211_from_colored_operads_to_operads} \linebreak \noindent\hyperlink{212_maps_of_operads}{2.1.2 Maps of $\infty$-operads}\dotfill \pageref*{212_maps_of_operads} \linebreak \noindent\hyperlink{213_algebra_objects}{2.1.3 Algebra objects}\dotfill \pageref*{213_algebra_objects} \linebreak \noindent\hyperlink{214_preoperads}{2.1.4 $\infty$-Preoperads}\dotfill \pageref*{214_preoperads} \linebreak \noindent\hyperlink{22_constructions_of_operads}{2.2 Constructions of $\infty$-Operads}\dotfill \pageref*{22_constructions_of_operads} \linebreak \noindent\hyperlink{23_disintegration_and_assembly}{2.3 Disintegration and assembly}\dotfill \pageref*{23_disintegration_and_assembly} \linebreak \noindent\hyperlink{231_disintegration_and_assembly}{2.3.1 Disintegration and assembly}\dotfill \pageref*{231_disintegration_and_assembly} \linebreak \noindent\hyperlink{232_generalized_operads}{2.3.2 Generalized $\infty$-operads}\dotfill \pageref*{232_generalized_operads} \linebreak \noindent\hyperlink{233_approximations_to_operads}{2.3.3 Approximations to $\infty$-operads}\dotfill \pageref*{233_approximations_to_operads} \linebreak \noindent\hyperlink{234_disintegration_of_operads}{2.3.4 Disintegration of $\infty$-operads}\dotfill \pageref*{234_disintegration_of_operads} \linebreak \noindent\hyperlink{24_products_and_coproducts}{2.4 Products and coproducts}\dotfill \pageref*{24_products_and_coproducts} \linebreak \noindent\hyperlink{241_cartesian_symmetric_monoidal_structure}{2.4.1 Cartesian symmetric monoidal structure}\dotfill \pageref*{241_cartesian_symmetric_monoidal_structure} \linebreak \noindent\hyperlink{242_monoid_objects}{2.4.2 Monoid objects}\dotfill \pageref*{242_monoid_objects} \linebreak \noindent\hyperlink{243_cocartesian_symmetric_monoidal_structure}{2.4.3 CoCartesian Symmetric Monoidal Structure}\dotfill \pageref*{243_cocartesian_symmetric_monoidal_structure} \linebreak \noindent\hyperlink{244_wreath_products}{2.4.4 Wreath Products}\dotfill \pageref*{244_wreath_products} \linebreak \noindent\hyperlink{3_algebras_and_modules_over_operads}{3. Algebras and modules over $\infty$-operads}\dotfill \pageref*{3_algebras_and_modules_over_operads} \linebreak \noindent\hyperlink{31_free_algebras}{3.1 Free algebras}\dotfill \pageref*{31_free_algebras} \linebreak \noindent\hyperlink{32_limits_and_colimits_of_algebras}{3.2 Limits and colimits of algebras}\dotfill \pageref*{32_limits_and_colimits_of_algebras} \linebreak \noindent\hyperlink{33_modules_over_operads}{3.3 Modules over $\infty$-operads}\dotfill \pageref*{33_modules_over_operads} \linebreak \noindent\hyperlink{331_coherent_operads}{3.3.1 Coherent $\infty$-operads}\dotfill \pageref*{331_coherent_operads} \linebreak \noindent\hyperlink{34_general_features_of_module_categories}{3.4 General features of module $\infty$-categories}\dotfill \pageref*{34_general_features_of_module_categories} \linebreak \noindent\hyperlink{4_associative_algebras_and_their_modules}{4. Associative algebras and their modules}\dotfill \pageref*{4_associative_algebras_and_their_modules} \linebreak \noindent\hyperlink{41_associative_algebras}{4.1 Associative algebras}\dotfill \pageref*{41_associative_algebras} \linebreak \noindent\hyperlink{411_the_operad_}{4.1.1 The $\infty$-Operad $\mathcal{Ass}^\otimes$}\dotfill \pageref*{411_the_operad_} \linebreak \noindent\hyperlink{412_simplicial_models_for_associative_algebras}{4.1.2 Simplicial models for associative algebras}\dotfill \pageref*{412_simplicial_models_for_associative_algebras} \linebreak \noindent\hyperlink{413_monoidal_model_categories}{4.1.3 Monoidal Model Categories}\dotfill \pageref*{413_monoidal_model_categories} \linebreak \noindent\hyperlink{414_rectification_of_associative_algebras}{4.1.4 Rectification of Associative Algebras}\dotfill \pageref*{414_rectification_of_associative_algebras} \linebreak \noindent\hyperlink{42_left_and_right_modules}{4.2 Left and Right Modules}\dotfill \pageref*{42_left_and_right_modules} \linebreak \noindent\hyperlink{421_the_operad_}{4.2.1 The $\infty$-Operad $\mathcal{L M}^{\otimes}$}\dotfill \pageref*{421_the_operad_} \linebreak \noindent\hyperlink{422_simplicial_models_for_algebras_and_modules}{4.2.2 Simplicial models for algebras and modules}\dotfill \pageref*{422_simplicial_models_for_algebras_and_modules} \linebreak \noindent\hyperlink{423_limits_and_colimits_of_algebras}{4.2.3 Limits and colimits of algebras}\dotfill \pageref*{423_limits_and_colimits_of_algebras} \linebreak \noindent\hyperlink{424_free_modules}{4.2.4 Free modules}\dotfill \pageref*{424_free_modules} \linebreak \noindent\hyperlink{425_duality_in_monoidal_categories}{4.2.5 Duality in monoidal $\infty$-categories}\dotfill \pageref*{425_duality_in_monoidal_categories} \linebreak \noindent\hyperlink{43_bimodules}{4.3 Bimodules}\dotfill \pageref*{43_bimodules} \linebreak \noindent\hyperlink{431_the_operad_}{4.3.1 The $\infty$-Operad $\mathcal{BM}^{\otimes}$}\dotfill \pageref*{431_the_operad_} \linebreak \noindent\hyperlink{432_simplicial_models_for_algebras_and_modules}{4.3.2 Simplicial models for algebras and modules}\dotfill \pageref*{432_simplicial_models_for_algebras_and_modules} \linebreak \noindent\hyperlink{433_limits_colimits_and_free_bimodules}{4.3.3 Limits, Colimits, and Free Bimodules}\dotfill \pageref*{433_limits_colimits_and_free_bimodules} \linebreak \noindent\hyperlink{434_multilinear_maps}{4.3.4 Multilinear maps}\dotfill \pageref*{434_multilinear_maps} \linebreak \noindent\hyperlink{435_tensor_products_and_the_bar_construction}{4.3.5 Tensor Products and the Bar Construction}\dotfill \pageref*{435_tensor_products_and_the_bar_construction} \linebreak \noindent\hyperlink{436_associtivity_of_the_tensor_product}{4.3.6 Associtivity of the Tensor Product}\dotfill \pageref*{436_associtivity_of_the_tensor_product} \linebreak \noindent\hyperlink{437_duality_of_bimodules}{4.3.7 Duality of Bimodules}\dotfill \pageref*{437_duality_of_bimodules} \linebreak \noindent\hyperlink{44_modules_over_commutative_algebras}{4.4 Modules over commutative algebras}\dotfill \pageref*{44_modules_over_commutative_algebras} \linebreak \noindent\hyperlink{5_little_cubes_and_factorizable_sheaves}{5. Little cubes and factorizable sheaves}\dotfill \pageref*{5_little_cubes_and_factorizable_sheaves} \linebreak \noindent\hyperlink{51_definitions_and_basic_properties}{5.1 Definitions and basic properties}\dotfill \pageref*{51_definitions_and_basic_properties} \linebreak \noindent\hyperlink{52_little_cubes_and_manifold_topology}{5.2 Little cubes and manifold topology}\dotfill \pageref*{52_little_cubes_and_manifold_topology} \linebreak \noindent\hyperlink{521_embeddings_of_topological_manifolds}{5.2.1 Embeddings of topological manifolds}\dotfill \pageref*{521_embeddings_of_topological_manifolds} \linebreak \noindent\hyperlink{522_variations_on_the_little_cubes_operad}{5.2.2 Variations on the little cubes operad}\dotfill \pageref*{522_variations_on_the_little_cubes_operad} \linebreak \noindent\hyperlink{523_nonunital_algebras}{5.2.3 Nonunital $\mathbb{E}_k$-Algebras}\dotfill \pageref*{523_nonunital_algebras} \linebreak \noindent\hyperlink{524_little_cubes_in_a_manifold}{5.2.4 Little cubes in a manifold}\dotfill \pageref*{524_little_cubes_in_a_manifold} \linebreak \noindent\hyperlink{53_topological_chiral_homology}{5.3 Topological chiral homology}\dotfill \pageref*{53_topological_chiral_homology} \linebreak \noindent\hyperlink{6_algebraic_structures_on_categories}{6. Algebraic structures on $\infty$-categories}\dotfill \pageref*{6_algebraic_structures_on_categories} \linebreak \noindent\hyperlink{61_endomorphism_objects}{6.1 Endomorphism objects}\dotfill \pageref*{61_endomorphism_objects} \linebreak \noindent\hyperlink{62_monads_and_barrbeck_theorem}{6.2 Monads and Barr-Beck theorem}\dotfill \pageref*{62_monads_and_barrbeck_theorem} \linebreak \noindent\hyperlink{621_split_simplicial_objects}{6.2.1 Split simplicial objects}\dotfill \pageref*{621_split_simplicial_objects} \linebreak \noindent\hyperlink{622_the_barrbeck_theorem}{6.2.2 The Barr-Beck theorem}\dotfill \pageref*{622_the_barrbeck_theorem} \linebreak \noindent\hyperlink{623_bicartesian_fibrations}{6.2.3 BiCartesian Fibrations}\dotfill \pageref*{623_bicartesian_fibrations} \linebreak \noindent\hyperlink{624_descent_and_the_beckchevalley_condition}{6.2.4 Descent and the Beck-Chevalley condition}\dotfill \pageref*{624_descent_and_the_beckchevalley_condition} \linebreak \noindent\hyperlink{7_the_calculus_of_functors}{7. The calculus of functors}\dotfill \pageref*{7_the_calculus_of_functors} \linebreak \noindent\hyperlink{71_the_calculus_of_functors}{7.1 The calculus of functors}\dotfill \pageref*{71_the_calculus_of_functors} \linebreak \noindent\hyperlink{711_excisive_functors}{7.1.1 $n$-Excisive Functors}\dotfill \pageref*{711_excisive_functors} \linebreak \noindent\hyperlink{712_taylor_tower}{7.1.2 Taylor Tower}\dotfill \pageref*{712_taylor_tower} \linebreak \noindent\hyperlink{716_norm_maps}{7.1.6 Norm maps}\dotfill \pageref*{716_norm_maps} \linebreak \noindent\hyperlink{8_algebra_in_stable_homotopy_theory}{8. Algebra in stable homotopy theory}\dotfill \pageref*{8_algebra_in_stable_homotopy_theory} \linebreak \noindent\hyperlink{81_structured_ring_spectra}{8.1 Structured ring spectra}\dotfill \pageref*{81_structured_ring_spectra} \linebreak \noindent\hyperlink{811_rings_and_their_modules}{8.1.1 $\mathbb{E}_1$-rings and their modules}\dotfill \pageref*{811_rings_and_their_modules} \linebreak \noindent\hyperlink{812_recognition_principle}{8.1.2 Recognition principle}\dotfill \pageref*{812_recognition_principle} \linebreak \noindent\hyperlink{813_change_of_ring}{8.1.3 Change of ring}\dotfill \pageref*{813_change_of_ring} \linebreak \noindent\hyperlink{814_algebras_over_commutative_rings}{8.1.4 Algebras over Commutative Rings}\dotfill \pageref*{814_algebras_over_commutative_rings} \linebreak \noindent\hyperlink{82_properties_of_rings_and_modules}{8.2 Properties of rings and modules}\dotfill \pageref*{82_properties_of_rings_and_modules} \linebreak \noindent\hyperlink{821_free_resolutions_and_spectral_sequences}{8.2.1 Free resolutions and Spectral Sequences}\dotfill \pageref*{821_free_resolutions_and_spectral_sequences} \linebreak \noindent\hyperlink{822_flat_and_projective_modules}{8.2.2 Flat and projective modules}\dotfill \pageref*{822_flat_and_projective_modules} \linebreak \noindent\hyperlink{823_injective_objects_of_stable_categories}{8.2.3 Injective objects of stable $\infty$-categories}\dotfill \pageref*{823_injective_objects_of_stable_categories} \linebreak \noindent\hyperlink{824_localization_and_ore_conditions}{8.2.4 Localization and Ore conditions}\dotfill \pageref*{824_localization_and_ore_conditions} \linebreak \noindent\hyperlink{825_finiteness_properties_of_rings_and_modules}{8.2.5 Finiteness properties of rings and modules}\dotfill \pageref*{825_finiteness_properties_of_rings_and_modules} \linebreak \noindent\hyperlink{83_the_cotangent_complex_formalism}{8.3 The cotangent complex formalism}\dotfill \pageref*{83_the_cotangent_complex_formalism} \linebreak \noindent\hyperlink{84_deformation_theory}{8.4 Deformation theory}\dotfill \pageref*{84_deformation_theory} \linebreak \noindent\hyperlink{85_tale_morphisms}{8.5 \'E{}tale morphisms}\dotfill \pageref*{85_tale_morphisms} \linebreak \noindent\hyperlink{a_constructible_sheaves_and_exit_paths}{A Constructible sheaves and exit paths}\dotfill \pageref*{a_constructible_sheaves_and_exit_paths} \linebreak \noindent\hyperlink{b_categorical_patterns}{B Categorical patterns}\dotfill \pageref*{b_categorical_patterns} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak The following is (or will eventually be) a linked list of keywords. \hypertarget{1_stable_categories}{}\subsection*{{1. Stable $\infty$-categories}}\label{1_stable_categories} \hypertarget{11_foundations}{}\subsubsection*{{1.1 Foundations}}\label{11_foundations} \hypertarget{111_stability}{}\paragraph*{{1.1.1 Stability}}\label{111_stability} \begin{itemize}% \item [[stable (∞,1)-category]] \begin{itemize}% \item [[stabilization]] \end{itemize} \end{itemize} \hypertarget{112_the_homotopy_category_of_a_stable_category}{}\paragraph*{{1.1.2 The homotopy category of a stable $\infty$-category}}\label{112_the_homotopy_category_of_a_stable_category} \begin{itemize}% \item [[triangulated category]] \end{itemize} \hypertarget{113_closure_properties_of_stable_categories}{}\paragraph*{{1.1.3 Closure properties of stable $\infty$-categories}}\label{113_closure_properties_of_stable_categories} \hypertarget{114_exact_functors}{}\paragraph*{{1.1.4 Exact functors}}\label{114_exact_functors} \begin{itemize}% \item [[exact (∞,1)-functor]] \end{itemize} \hypertarget{12_stable_categories_and_homological_algebra}{}\subsubsection*{{1.2 Stable $\infty$-categories and homological algebra}}\label{12_stable_categories_and_homological_algebra} \begin{itemize}% \item [[homological algebra]] \end{itemize} \hypertarget{121_tstructures_on_stable_categories}{}\paragraph*{{1.2.1 t-Structures on stable $\infty$-categories}}\label{121_tstructures_on_stable_categories} \begin{itemize}% \item [[t-structure]] \item [[t-structure on a stable (∞,1)-category]] \item [[heart of a stable (∞,1)-category]] \end{itemize} \hypertarget{122_filtered_objects_and_spectral_sequences}{}\paragraph*{{1.2.2 Filtered objects and spectral sequences}}\label{122_filtered_objects_and_spectral_sequences} \begin{itemize}% \item [[spectral sequence]] \item [[spectral sequence of a filtered stable homotopy type]] \begin{itemize}% \item [[Adams spectral sequence]] \end{itemize} \end{itemize} \hypertarget{123_the_doldkan_correspondence}{}\paragraph*{{1.2.3 The Dold-Kan correspondence}}\label{123_the_doldkan_correspondence} \begin{itemize}% \item [[Dold-Kan correspondence]] \end{itemize} \hypertarget{124_the_categorical_doldkan_correspondence}{}\paragraph*{{1.2.4 The $\infty$-categorical Dold-Kan correspondence}}\label{124_the_categorical_doldkan_correspondence} \begin{itemize}% \item [[infinity-Dold-Kan correspondence]] \item [[spectral sequence of a simplicial stable homotopy type]] \end{itemize} \hypertarget{13_homological_algebra_and_derived_categories}{}\subsubsection*{{1.3 Homological algebra and derived categories}}\label{13_homological_algebra_and_derived_categories} \hypertarget{131_nerves_of_differential_graded_categories}{}\paragraph*{{1.3.1 Nerves of differential graded categories}}\label{131_nerves_of_differential_graded_categories} \begin{itemize}% \item [[dg-nerve]] \end{itemize} \hypertarget{132_derived_categories}{}\paragraph*{{1.3.2 Derived $\infty$-categories}}\label{132_derived_categories} \begin{itemize}% \item [[derived category]] \end{itemize} \hypertarget{133_the_universal_property_of_}{}\paragraph*{{1.3.3 The universal property of $\mathcal{D}^-(\mathcal{A})$}}\label{133_the_universal_property_of_} \hypertarget{134_inverting_quasiisomorphisms}{}\paragraph*{{1.3.4 Inverting Quasi-isomorphisms}}\label{134_inverting_quasiisomorphisms} \hypertarget{135_grothendieck_abelian_categories}{}\paragraph*{{1.3.5 Grothendieck abelian categories}}\label{135_grothendieck_abelian_categories} \begin{itemize}% \item [[Grothendieck category]] \end{itemize} \hypertarget{136_complexes_of_injective_objects}{}\paragraph*{{1.3.6 Complexes of injective objects}}\label{136_complexes_of_injective_objects} \begin{itemize}% \item [[injective object]] \item [[chain complex]] \end{itemize} \hypertarget{14_spectra_and_stabilization}{}\subsubsection*{{1.4 Spectra and stabilization}}\label{14_spectra_and_stabilization} \hypertarget{141_the_brown_representability_theorem}{}\paragraph*{{1.4.1 The Brown representability theorem}}\label{141_the_brown_representability_theorem} \begin{itemize}% \item [[Brown representability theorem]] \end{itemize} \hypertarget{142_spectrum_objects}{}\paragraph*{{1.4.2 Spectrum objects}}\label{142_spectrum_objects} \begin{itemize}% \item [[excisive (∞,1)-functor]] \item [[spectrum object]] \end{itemize} \hypertarget{143_the_category_of_spectra}{}\paragraph*{{1.4.3 The $\infty$-category of spectra}}\label{143_the_category_of_spectra} \begin{itemize}% \item [[(∞,1)-category of spectra]] \end{itemize} \hypertarget{144_presentable_stable_categories}{}\paragraph*{{1.4.4 Presentable stable $\infty$-categories}}\label{144_presentable_stable_categories} \begin{itemize}% \item [[presentable (∞,1)-category]] \item [[stable (∞,1)-category]] \end{itemize} \hypertarget{2_operads}{}\subsection*{{2. $\infty$-Operads}}\label{2_operads} \hypertarget{21_foundations}{}\subsubsection*{{2.1 Foundations}}\label{21_foundations} \hypertarget{211_from_colored_operads_to_operads}{}\paragraph*{{2.1.1 From colored operads to $\infty$-operads}}\label{211_from_colored_operads_to_operads} \begin{itemize}% \item [[Segal Gamma-category]] \item [[inert morphism]] \item [[category of operators]] \item [[(∞,1)-operad]] \end{itemize} \hypertarget{212_maps_of_operads}{}\paragraph*{{2.1.2 Maps of $\infty$-operads}}\label{212_maps_of_operads} \begin{itemize}% \item [[morphism of (∞,1)-operads]] \item [[fibration of (∞,1)-operads]] \end{itemize} \hypertarget{213_algebra_objects}{}\paragraph*{{2.1.3 Algebra objects}}\label{213_algebra_objects} \begin{itemize}% \item [[algebra over an (∞,1)-operad]] \item $\mathcal{O}$-[[monoidal (∞,1)-category]] \end{itemize} \hypertarget{214_preoperads}{}\paragraph*{{2.1.4 $\infty$-Preoperads}}\label{214_preoperads} \hypertarget{22_constructions_of_operads}{}\subsubsection*{{2.2 Constructions of $\infty$-Operads}}\label{22_constructions_of_operads} \hypertarget{23_disintegration_and_assembly}{}\subsubsection*{{2.3 Disintegration and assembly}}\label{23_disintegration_and_assembly} \hypertarget{231_disintegration_and_assembly}{}\paragraph*{{2.3.1 Disintegration and assembly}}\label{231_disintegration_and_assembly} \hypertarget{232_generalized_operads}{}\paragraph*{{2.3.2 Generalized $\infty$-operads}}\label{232_generalized_operads} \begin{itemize}% \item [[generalized (∞,1)-operad]] \item [[family of (∞,1)-operads]] \end{itemize} \hypertarget{233_approximations_to_operads}{}\paragraph*{{2.3.3 Approximations to $\infty$-operads}}\label{233_approximations_to_operads} \hypertarget{234_disintegration_of_operads}{}\paragraph*{{2.3.4 Disintegration of $\infty$-operads}}\label{234_disintegration_of_operads} \hypertarget{24_products_and_coproducts}{}\subsubsection*{{2.4 Products and coproducts}}\label{24_products_and_coproducts} \hypertarget{241_cartesian_symmetric_monoidal_structure}{}\paragraph*{{2.4.1 Cartesian symmetric monoidal structure}}\label{241_cartesian_symmetric_monoidal_structure} \begin{itemize}% \item [[cartesian monoidal (∞,1)-category]] \end{itemize} \hypertarget{242_monoid_objects}{}\paragraph*{{2.4.2 Monoid objects}}\label{242_monoid_objects} \begin{itemize}% \item [[monoid]] \item [[Gamma space]] \end{itemize} \hypertarget{243_cocartesian_symmetric_monoidal_structure}{}\paragraph*{{2.4.3 CoCartesian Symmetric Monoidal Structure}}\label{243_cocartesian_symmetric_monoidal_structure} \begin{itemize}% \item [[cocartesian monoidal (∞,1)-category]] \end{itemize} \hypertarget{244_wreath_products}{}\paragraph*{{2.4.4 Wreath Products}}\label{244_wreath_products} \hypertarget{3_algebras_and_modules_over_operads}{}\subsection*{{3. Algebras and modules over $\infty$-operads}}\label{3_algebras_and_modules_over_operads} \hypertarget{31_free_algebras}{}\subsubsection*{{3.1 Free algebras}}\label{31_free_algebras} \hypertarget{32_limits_and_colimits_of_algebras}{}\subsubsection*{{3.2 Limits and colimits of algebras}}\label{32_limits_and_colimits_of_algebras} \hypertarget{33_modules_over_operads}{}\subsubsection*{{3.3 Modules over $\infty$-operads}}\label{33_modules_over_operads} \begin{itemize}% \item [[module over an algebra over an (∞,1)-operad]] \end{itemize} \hypertarget{331_coherent_operads}{}\paragraph*{{3.3.1 Coherent $\infty$-operads}}\label{331_coherent_operads} \begin{itemize}% \item [[coherent (∞,1)-operad]] \end{itemize} \hypertarget{34_general_features_of_module_categories}{}\subsubsection*{{3.4 General features of module $\infty$-categories}}\label{34_general_features_of_module_categories} \hypertarget{4_associative_algebras_and_their_modules}{}\subsection*{{4. Associative algebras and their modules}}\label{4_associative_algebras_and_their_modules} \hypertarget{41_associative_algebras}{}\subsubsection*{{4.1 Associative algebras}}\label{41_associative_algebras} \hypertarget{411_the_operad_}{}\paragraph*{{4.1.1 The $\infty$-Operad $\mathcal{Ass}^\otimes$}}\label{411_the_operad_} \begin{itemize}% \item [[associative operad]] \item [[A-∞ operad]] \item [[planar (∞,1)-operad]] \end{itemize} \hypertarget{412_simplicial_models_for_associative_algebras}{}\paragraph*{{4.1.2 Simplicial models for associative algebras}}\label{412_simplicial_models_for_associative_algebras} \begin{itemize}% \item [[simplicial algebra]] \item [[model structure on simplicial T-algebras]] \end{itemize} \hypertarget{413_monoidal_model_categories}{}\paragraph*{{4.1.3 Monoidal Model Categories}}\label{413_monoidal_model_categories} \begin{itemize}% \item [[monoidal model category]] \end{itemize} \hypertarget{414_rectification_of_associative_algebras}{}\paragraph*{{4.1.4 Rectification of Associative Algebras}}\label{414_rectification_of_associative_algebras} \begin{itemize}% \item [[model structure on algebras over an operad]] \item [[homotopy T-algebras]]/[[model structure on simplicial T-algebras]] \end{itemize} \hypertarget{42_left_and_right_modules}{}\subsubsection*{{4.2 Left and Right Modules}}\label{42_left_and_right_modules} \hypertarget{421_the_operad_}{}\paragraph*{{4.2.1 The $\infty$-Operad $\mathcal{L M}^{\otimes}$}}\label{421_the_operad_} \begin{itemize}% \item [[(∞,1)-operad for (∞,1)-modules over an A-∞ algebra]] \item [[(∞,1)-module]] \end{itemize} \hypertarget{422_simplicial_models_for_algebras_and_modules}{}\paragraph*{{4.2.2 Simplicial models for algebras and modules}}\label{422_simplicial_models_for_algebras_and_modules} \hypertarget{423_limits_and_colimits_of_algebras}{}\paragraph*{{4.2.3 Limits and colimits of algebras}}\label{423_limits_and_colimits_of_algebras} \hypertarget{424_free_modules}{}\paragraph*{{4.2.4 Free modules}}\label{424_free_modules} \hypertarget{425_duality_in_monoidal_categories}{}\paragraph*{{4.2.5 Duality in monoidal $\infty$-categories}}\label{425_duality_in_monoidal_categories} \hypertarget{43_bimodules}{}\subsubsection*{{4.3 Bimodules}}\label{43_bimodules} \hypertarget{431_the_operad_}{}\paragraph*{{4.3.1 The $\infty$-Operad $\mathcal{BM}^{\otimes}$}}\label{431_the_operad_} \begin{itemize}% \item [[operad for bimodules over algebras]] \item [[∞-bimodule]] \item [[bitensoring]] \end{itemize} \hypertarget{432_simplicial_models_for_algebras_and_modules}{}\paragraph*{{4.3.2 Simplicial models for algebras and modules}}\label{432_simplicial_models_for_algebras_and_modules} \begin{itemize}% \item [[model structure on modules over an algebra over an operad]] \end{itemize} \hypertarget{433_limits_colimits_and_free_bimodules}{}\paragraph*{{4.3.3 Limits, Colimits, and Free Bimodules}}\label{433_limits_colimits_and_free_bimodules} (\ldots{}) \hypertarget{434_multilinear_maps}{}\paragraph*{{4.3.4 Multilinear maps}}\label{434_multilinear_maps} \begin{itemize}% \item [[multilinear map]] \item [[bilinear map in an (∞,1)-category]] \end{itemize} \hypertarget{435_tensor_products_and_the_bar_construction}{}\paragraph*{{4.3.5 Tensor Products and the Bar Construction}}\label{435_tensor_products_and_the_bar_construction} \begin{itemize}% \item [[tensor product of ∞-modules]] \item [[bar construction]] \end{itemize} \hypertarget{436_associtivity_of_the_tensor_product}{}\paragraph*{{4.3.6 Associtivity of the Tensor Product}}\label{436_associtivity_of_the_tensor_product} \begin{itemize}% \item [[associativity]] \end{itemize} \hypertarget{437_duality_of_bimodules}{}\paragraph*{{4.3.7 Duality of Bimodules}}\label{437_duality_of_bimodules} (\ldots{}) \hypertarget{44_modules_over_commutative_algebras}{}\subsubsection*{{4.4 Modules over commutative algebras}}\label{44_modules_over_commutative_algebras} \hypertarget{5_little_cubes_and_factorizable_sheaves}{}\subsection*{{5. Little cubes and factorizable sheaves}}\label{5_little_cubes_and_factorizable_sheaves} \begin{itemize}% \item [[little cubes operad]] \end{itemize} \hypertarget{51_definitions_and_basic_properties}{}\subsubsection*{{5.1 Definitions and basic properties}}\label{51_definitions_and_basic_properties} \hypertarget{52_little_cubes_and_manifold_topology}{}\subsubsection*{{5.2 Little cubes and manifold topology}}\label{52_little_cubes_and_manifold_topology} \hypertarget{521_embeddings_of_topological_manifolds}{}\paragraph*{{5.2.1 Embeddings of topological manifolds}}\label{521_embeddings_of_topological_manifolds} \hypertarget{522_variations_on_the_little_cubes_operad}{}\paragraph*{{5.2.2 Variations on the little cubes operad}}\label{522_variations_on_the_little_cubes_operad} \hypertarget{523_nonunital_algebras}{}\paragraph*{{5.2.3 Nonunital $\mathbb{E}_k$-Algebras}}\label{523_nonunital_algebras} \begin{itemize}% \item [[nonunital ring]] \item [[nonunital Ek-algebra]] \item [[unitalization]] \item [[augmented A-∞ algebra]] \end{itemize} \hypertarget{524_little_cubes_in_a_manifold}{}\paragraph*{{5.2.4 Little cubes in a manifold}}\label{524_little_cubes_in_a_manifold} \hypertarget{53_topological_chiral_homology}{}\subsubsection*{{5.3 Topological chiral homology}}\label{53_topological_chiral_homology} \begin{itemize}% \item [[topological chiral homology]] \end{itemize} \hypertarget{6_algebraic_structures_on_categories}{}\subsection*{{6. Algebraic structures on $\infty$-categories}}\label{6_algebraic_structures_on_categories} \hypertarget{61_endomorphism_objects}{}\subsubsection*{{6.1 Endomorphism objects}}\label{61_endomorphism_objects} \hypertarget{62_monads_and_barrbeck_theorem}{}\subsubsection*{{6.2 Monads and Barr-Beck theorem}}\label{62_monads_and_barrbeck_theorem} \begin{itemize}% \item [[(∞,1)-monad]] \item [[symmetric monoidal (∞,1)-category of presentable (∞,1)-categories]] \end{itemize} \hypertarget{621_split_simplicial_objects}{}\paragraph*{{6.2.1 Split simplicial objects}}\label{621_split_simplicial_objects} \hypertarget{622_the_barrbeck_theorem}{}\paragraph*{{6.2.2 The Barr-Beck theorem}}\label{622_the_barrbeck_theorem} \begin{itemize}% \item [[Barr-Beck theorem]] \end{itemize} \hypertarget{623_bicartesian_fibrations}{}\paragraph*{{6.2.3 BiCartesian Fibrations}}\label{623_bicartesian_fibrations} \hypertarget{624_descent_and_the_beckchevalley_condition}{}\paragraph*{{6.2.4 Descent and the Beck-Chevalley condition}}\label{624_descent_and_the_beckchevalley_condition} \begin{itemize}% \item [[higher monadic descent]] \end{itemize} \hypertarget{7_the_calculus_of_functors}{}\subsection*{{7. The calculus of functors}}\label{7_the_calculus_of_functors} \begin{itemize}% \item [[Goodwillie calculus]] \end{itemize} \hypertarget{71_the_calculus_of_functors}{}\subsubsection*{{7.1 The calculus of functors}}\label{71_the_calculus_of_functors} \hypertarget{711_excisive_functors}{}\paragraph*{{7.1.1 $n$-Excisive Functors}}\label{711_excisive_functors} \begin{itemize}% \item [[differentiable (∞,1)-category]] \item [[n-excisive (∞,1)-functor]] \item [[n-reduced (∞,1)-functor]] \item [[n-homogeneous (∞,1)-functor]] \end{itemize} \hypertarget{712_taylor_tower}{}\paragraph*{{7.1.2 Taylor Tower}}\label{712_taylor_tower} \begin{itemize}% \item [[Goodwillie-Taylor tower]] \end{itemize} \hypertarget{716_norm_maps}{}\paragraph*{{7.1.6 Norm maps}}\label{716_norm_maps} \begin{itemize}% \item [[norm map]] \item [[Tate construction]] \end{itemize} \hypertarget{8_algebra_in_stable_homotopy_theory}{}\subsection*{{8. Algebra in stable homotopy theory}}\label{8_algebra_in_stable_homotopy_theory} \begin{itemize}% \item [[stable homotopy category]] \item [[stable homotopy theory]] \end{itemize} \hypertarget{81_structured_ring_spectra}{}\subsubsection*{{8.1 Structured ring spectra}}\label{81_structured_ring_spectra} \hypertarget{811_rings_and_their_modules}{}\paragraph*{{8.1.1 $\mathbb{E}_1$-rings and their modules}}\label{811_rings_and_their_modules} \begin{itemize}% \item [[A-∞ ring]], [[ring spectrum]], [[algebra spectrum]] \item [[∞-module]]. [[module spectrum]] \end{itemize} \hypertarget{812_recognition_principle}{}\paragraph*{{8.1.2 Recognition principle}}\label{812_recognition_principle} \hypertarget{813_change_of_ring}{}\paragraph*{{8.1.3 Change of ring}}\label{813_change_of_ring} \begin{itemize}% \item [[connective cover]] \end{itemize} \hypertarget{814_algebras_over_commutative_rings}{}\paragraph*{{8.1.4 Algebras over Commutative Rings}}\label{814_algebras_over_commutative_rings} \begin{itemize}% \item [[A-∞ algebra]] \item [[stable Dold-Kan correspondence]] \end{itemize} \hypertarget{82_properties_of_rings_and_modules}{}\subsubsection*{{8.2 Properties of rings and modules}}\label{82_properties_of_rings_and_modules} \hypertarget{821_free_resolutions_and_spectral_sequences}{}\paragraph*{{8.2.1 Free resolutions and Spectral Sequences}}\label{821_free_resolutions_and_spectral_sequences} \hypertarget{822_flat_and_projective_modules}{}\paragraph*{{8.2.2 Flat and projective modules}}\label{822_flat_and_projective_modules} \hypertarget{823_injective_objects_of_stable_categories}{}\paragraph*{{8.2.3 Injective objects of stable $\infty$-categories}}\label{823_injective_objects_of_stable_categories} \hypertarget{824_localization_and_ore_conditions}{}\paragraph*{{8.2.4 Localization and Ore conditions}}\label{824_localization_and_ore_conditions} \hypertarget{825_finiteness_properties_of_rings_and_modules}{}\paragraph*{{8.2.5 Finiteness properties of rings and modules}}\label{825_finiteness_properties_of_rings_and_modules} \begin{itemize}% \item [[perfect module]] \item [[compactly generated (∞,1)-category|compactly generated]] [[stable (∞,1)-category]] \item [[compactly generated triangulated category]] \end{itemize} \hypertarget{83_the_cotangent_complex_formalism}{}\subsubsection*{{8.3 The cotangent complex formalism}}\label{83_the_cotangent_complex_formalism} \begin{itemize}% \item [[tangent (∞,1)-category]] \begin{itemize}% \item [[cotangent complex]] \item [[tangent complex]] \end{itemize} \end{itemize} \hypertarget{84_deformation_theory}{}\subsubsection*{{8.4 Deformation theory}}\label{84_deformation_theory} \begin{itemize}% \item [[deformation theory]] \end{itemize} \hypertarget{85_tale_morphisms}{}\subsubsection*{{8.5 \'E{}tale morphisms}}\label{85_tale_morphisms} \begin{itemize}% \item [[etale morphism]] \end{itemize} \hypertarget{a_constructible_sheaves_and_exit_paths}{}\subsection*{{A Constructible sheaves and exit paths}}\label{a_constructible_sheaves_and_exit_paths} \begin{itemize}% \item [[higher homotopy van Kampen theorem]] \end{itemize} \hypertarget{b_categorical_patterns}{}\subsection*{{B Categorical patterns}}\label{b_categorical_patterns} \hypertarget{references}{}\subsection*{{References}}\label{references} The book is based on the series of articles \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Stable ∞-Categories]]} (\href{http://www.arxiv.org/abs/math.CT/0608228}{arxiv}) \emph{[[Noncommutative Algebra]]} (\href{http://arxiv.org/abs/math/0702299}{arXiv}) \emph{[[Commutative Algebra]]} (\href{http://arxiv.org/abs/math/0703204}{arXiv}) \item \emph{[[Deformation Theory]]} (\href{http://arxiv.org/abs/0709.3091}{arXiv}) \item \emph{$\mathbb{E}[k]$-[[Ek-Algebras|Algebras]]} (\href{http://www.math.harvard.edu/~lurie/papers/DAG-VI.pdf}{pdf}) \end{itemize} category: reference \end{document}