\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Hilbert's Theorem 90} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{independence_of_characters}{Independence of characters}\dotfill \pageref*{independence_of_characters} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A theorem in [[Galois cohomology]] due to [[David Hilbert]]. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} There are actually two versions of Hilbert's theorem 90, one multiplicative and the other additive. We begin with the multiplicative version. \begin{theorem} \label{mult90}\hypertarget{mult90}{} \textbf{(Hilbert)} Suppose $K$ be a [[finite set|finite]] [[Galois extension]] of a [[field]] $k$, with a [[cyclic group|cyclic]] [[Galois group]] $G = \langle g \rangle$ of [[order]] $n$. Regard the [[multiplicative group]] $K^\ast$ as a $G$-[[module]]. Then the [[group cohomology]] of $G$ with [[coefficients]] in $K^\ast$ -- the [[Galois cohomology]] -- satisfies \begin{displaymath} H^1(G, K^\ast) = 0 \,. \end{displaymath} \end{theorem} Before embarking on the proof, we recall from the article \href{http://ncatlab.org/nlab/show/projective+resolution#CohomologyOfCyclicGroups}{projective resolution} that if $G = C_n$ is a finite cyclic group of order $n$, then there is a projective resolution of $\mathbb{Z}$ as trivial $G$-module: \begin{displaymath} \ldots \stackrel{N}{\to} \mathbb{Z}G \stackrel{D}{\to} \mathbb{Z}G \stackrel{N}{\to} \mathbb{Z}G \stackrel{D}{\to} \mathbb{Z}G \to \mathbb{Z} \to 0 \end{displaymath} where the map $\mathbb{Z}G \to \mathbb{Z}$ is induced from the trivial group homomorphism $G \to 1$ (hence is the map that forms the sum of all [[coefficients]] of all group elements), and where $D$, $N$ are multiplication by special elements in $\mathbb{Z}G$, also denoted $D$, $N$: \begin{displaymath} D \coloneqq g - 1, \end{displaymath} \begin{displaymath} \, \end{displaymath} \begin{displaymath} N \coloneqq 1 + g + g^2 + \ldots + g^{k-1} \end{displaymath} The calculations in the proof that follows implicitly refer to this resolution as a means to defining $H^n(G, A)$ (in the case $A = K^\ast$), by taking cohomology of the induced cochain complex \begin{displaymath} 0 \to \hom_{\mathbb{Z}G}(\mathbb{Z}, A) \to \hom_{\mathbb{Z}G}(\mathbb{Z}G, A) \to \hom_{\mathbb{Z}G}(\mathbb{Z}G, A) \to \ldots \end{displaymath} \begin{proof} Let $\sigma \in \mathbb{Z}G$ be an element of the [[group algebra]], and denote the [[action]] of $\sigma$ on an [[element]] $\beta \in K$ by exponential notation $\beta^\sigma$. The action of the element $N \in \mathbb{Z}G$ is \begin{displaymath} \beta^N = \beta^{1 + g + \ldots + g^{n-1}} = \beta \cdot \beta^g \cdot \ldots \beta^{g^{n-1}} \end{displaymath} which is precisely the \emph{[[norm]]} $N(\beta)$. We are to show that if $N(\beta) = 1$, then there exists $\alpha \in K$ such that $\beta = \alpha/g(\alpha)$. By lemma \ref{XYZ} below, the [[homomorphisms]] $1, g, \ldots, g^{n-1}: K^\ast \to K^\ast$ are, when considered as elements in a vector space of $K$-valued functions, $K$-[[linear independence|linearly independent]]. It follows in particular that \begin{displaymath} 1 + \beta g + \beta^{1+g}g^2 + \ldots + \beta^{1 + g + \ldots + g^{n-2}}g^{n-1} \end{displaymath} is not identically zero, and therefore there exists $\theta \in K^\ast$ such that the element \begin{displaymath} \alpha = \theta + \beta \theta^g + \beta^{1+g}\theta^{g^2} + \ldots + \beta^{1 + g + \ldots + g^{n-2}}\theta^{g^{n-1}} \end{displaymath} is non-zero. Using the fact that $N(\beta) = 1$, one may easily calculate that $\beta \alpha^g = \alpha$, as was to be shown. \end{proof} Now we give the additive version of Hilbert's theorem 90: \begin{theorem} \label{add90}\hypertarget{add90}{} Under the same hypotheses given in \ref{mult90}, and regarding the additive group $K$ as a $G$-module, we have \begin{displaymath} H^1(G, K) = 0 \,. \end{displaymath} \end{theorem} \begin{proof} \begin{displaymath} Tr(\alpha) \coloneqq N \cdot \alpha = \alpha + g(\alpha) + \ldots + g^{n-1}(\alpha). \end{displaymath} We want to show that if $Tr(\beta) = 0$, then there exists $\alpha \in K$ such that $\beta = \alpha - g(\alpha)$. By the theorem on linear independence of characters (following section), there exists $\theta$ such that $Tr(\theta) \neq 0$; notice $Tr(\theta)$ belongs to the ground field $k$ since $g \cdot N = N$. Put \begin{displaymath} \alpha \coloneqq \frac1{Tr(\theta)}(\beta g(\theta) + (\beta + g(\beta))g^2(\theta) + \ldots + (\beta + g(\beta) + \ldots + g^{n-2}(\beta))g^{n-1}(\theta). \end{displaymath} One may then calculate that \begin{displaymath} \itexarray{ \alpha - g(\alpha) & = & \frac1{Tr(\theta)}(\beta g(\theta) + \beta g^2(\theta) + \ldots + \beta g^{n-1}(\theta) - (g(\beta) + \ldots + g^{n-1}(\beta))\theta \\ & = & \frac1{Tr(\theta)}(\beta g(\theta) + \beta g^2(\theta) + \ldots + \beta g^{n-1}(\theta) + \beta \theta) \\ & = & \beta } \end{displaymath} where in the second line we used $Tr(\beta) = 0$. \end{proof} \hypertarget{independence_of_characters}{}\subsection*{{Independence of characters}}\label{independence_of_characters} The next result may be thought of as establishing ``independence of characters'' (where ``[[group character|characters]]'' are valued in the [[multiplicative group]] of a field): \begin{lemma} \label{XYZ}\hypertarget{XYZ}{} Let $K$ be a [[field]], let $G$ be a [[monoid]], and let $\chi_1, \ldots, \chi_n \colon G \to K^\ast$ be distinct monoid [[homomorphisms]]. Then the [[functions]] $\chi_i$, considered as functions valued in $K$, are $K$-[[linear independence|linearly independent]]. \end{lemma} \begin{proof} A single $\chi \colon G \to K^\ast$ obviously forms a [[linear independence|linearly independent]] set. Now suppose we have an [[equation]] \begin{displaymath} a_1 \chi_1 + \ldots + a_n \chi_n = 0 \end{displaymath} where $a_i \in K$, and assume $n$ is as small as possible. In particular, no $a_i$ is [[equality|equal]] to $0$, and $n \geq 2$. Choose $g \in G$ such that $\chi_1(g) \neq \chi_2(g)$. Then for all $h \in G$ we have \begin{displaymath} a_1 \chi_1(g h) + \ldots + a_n \chi_n(g h) = 0 \end{displaymath} so that \begin{displaymath} a_1 \chi_1(g) \chi_1 + \ldots + a_n \chi_n(g)\chi_n = 0. \end{displaymath} Dividing equation 2 by $\chi_1(g)$ and subtracting from it equation 1, the first term cancels, and we are left with a shorter relation \begin{displaymath} (a_2\frac{\chi_2(g)}{\chi_1(g)} - a_2)\chi_2 + \ldots = 0 \end{displaymath} which is a [[contradiction]]. \end{proof} A corollary of this result is an important result in its own right, the \textbf{normal basis heorem}. (Will write this out later. I am puzzled that all the proofs I've so far looked at involve determinants. What happened to the battle cry, ``Down with determinants!''?) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Kummer theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} e.g. \begin{itemize}% \item [[Günter Tamme]], section II 4.3 of \emph{[[Introduction to Étale Cohomology]]} \end{itemize} [[!redirects Hilbert Theorem 90]] [[!redirects Hilbert theorem 90]] [[!redirects Hilbert's theorem 90]] \end{document}