\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Hilbert module} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{operator_algebra}{}\paragraph*{{Operator algebra}}\label{operator_algebra} [[!include AQFT and operator algebra contents]] \hypertarget{index_theory}{}\paragraph*{{Index theory}}\label{index_theory} [[!include index theory - contents]] \hypertarget{hilbert_modules}{}\section*{{Hilbert modules}}\label{hilbert_modules} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{algebras_of_adjointable_operators_on_a_hilbert_module}{$C^\ast$-algebras of adjointable operators on a Hilbert module}\dotfill \pageref*{algebras_of_adjointable_operators_on_a_hilbert_module} \linebreak \noindent\hyperlink{compact_operators_on_a_hilbert_module}{Compact operators on a Hilbert $C^\ast$-module}\dotfill \pageref*{compact_operators_on_a_hilbert_module} \linebreak \noindent\hyperlink{fredholm_operators}{Fredholm operators}\dotfill \pageref*{fredholm_operators} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak Hilbert module is an abbreaviation both for a Hilbert $C^\ast$-module (this entry) and the analogous notion of a [[Hilbert Q-module]] (see there), where $Q$ is a [[quantale]] (or a [[locale]], in particular). \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{Hilbert $C^\ast$-module} (or simply \emph{Hilbert module}) is a generalization of the notion of \emph{[[Hilbert space]]} where the algebra of [[complex numbers]] is replaced by a possibly more general [[C\emph{-algebra]] $A$. In particular a Hilbert $A$-module has an [[inner product]] which takes values not in $\mathbb{C}$, but in $A$, and such that [[complex conjugation]] is replaced by the [[star-algebra|star-operation]] in $A$.} Hilbert $C^\ast$-modules naturally appear as modules over [[groupoid convolution algebras]]. Refined to [[Hilbert C\emph{-bimodules]] they serve as generalized [[homomorphism]] between [[C}-algebras]] in [[noncommutative topology]], and, when further equipped with a left weak [[Fredholm module]] as [[cocycles]] in [[KK-theory]]. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \begin{defn} \label{HilbertCStarModule}\hypertarget{HilbertCStarModule}{} For $B \in$ [[C\emph{Alg]], a [[Hilbert C}-module]] over $B$ is \begin{enumerate}% \item a [[complex numbers|complex]] [[vector space]] $H$; \item equipped with an [[action]] of $B$ from the right; \item equipped with a [[sesquilinear map]] (linear in the second argument) \begin{displaymath} \langle -,-\rangle \colon H \times H \to B \end{displaymath} (the $B$-valued [[inner product]]) \end{enumerate} such that \begin{enumerate}% \item $\langle -,-\rangle$ behaves like a positive definite inner product over $B$ in that for all $x,y \in H$ and $b \in B$ we have \begin{enumerate}% \item $\langle x,y\rangle^\ast = \langle y,x\rangle$ \item $\langle x,x\rangle \geq 0$ (in the sense of [[positive elements]] in $B$) \item $\langle x,x\rangle = 0$ precisely if $x = 0$; \item $\langle x,y \cdot b\rangle = \langle x,y \rangle \cdot b$ \end{enumerate} \item $H$ is [[complete space|complete]] with respect to the [[norm]] ${\Vert x \Vert_H} \coloneqq {\Vert \langle x,x\rangle\Vert_B}^{1/2}$. \end{enumerate} \end{defn} \begin{remark} \label{}\hypertarget{}{} In addition to the explicit $B$-linearity in the second argument under right multiplicatojn \begin{displaymath} \langle v, w \cdot b\rangle = \langle v,w\rangle \cdot b \end{displaymath} the axioms imply conjugate $B$-linearity in the first argument and under left multiplication \begin{displaymath} \langle v \cdot b,w\rangle = b^\ast \cdot \langle v,w\rangle \,. \end{displaymath} Because: \begin{displaymath} \begin{aligned} \langle v \cdot b,w\rangle & = \langle w, v\cdot b\rangle^\ast \\ & = \left( \left\langle w,v\right\rangle \cdot b\right)^\ast \\ & = b^\ast \cdot \langle w,v\rangle^\ast \\ & = b^\ast \cdot \langle v,w\rangle \end{aligned} \,. \end{displaymath} \end{remark} \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} First of all we have: \begin{example} \label{}\hypertarget{}{} An ordinary complex [[Hilbert space]] is a Hilbert $\mathbb{C}$-module. \end{example} The archetypical class of examples of Hilbert $C^\ast$-modules for [[commutative C\emph{-algebras]] is the following. The general definition \ref{HilbertCStarModule} may be understood as the generalization of the structure of this example to [[noncommutative topology|non-commutative C}-algebras]]. See also remark \ref{TheTrivialHilbertBundleAndL2} below. \begin{example} \label{FromAHilbertSpaceBundle}\hypertarget{FromAHilbertSpaceBundle}{} Let $X$ be a [[locally compact topological space]] and write $C_0(X)$ for its [[C\emph{-algebra]] of [[continuous functions]] [[vanishing at infinity]].} Let $E \to X$ be a [[fiber bundle]] of [[Hilbert spaces]] over $X$, hence a canonically [[associated bundle]] to a [[unitary group]]-[[principal bundle]]. Then the space $\Gamma_0(E)$ of continuous compactly supported [[sections]] is a Hilbert $C^\ast$-module over $C_0(X)$ with $C_0(X)$-valued [[inner product]] $\langle -,-\rangle$ the pointwise inner product in the [[Hilbert space]] [[fiber]] of $E$: \begin{displaymath} \langle \sigma_1, \sigma_2\rangle(x) \coloneqq \langle \sigma_1(y), \sigma_2(y)\rangle_{E_y} \;\in C_0(X)\,, \;\;\;\;\;\; \sigma_1, \sigma_2 \in \Gamma(E), \; x \in X \,. \end{displaymath} \end{example} \begin{prop} \label{}\hypertarget{}{} Every Hilbert $C_0(X)$-module arises, up to [[isomorphism]], as in example \ref{FromAHilbertSpaceBundle}. \end{prop} \begin{example} \label{CAstAlgebraAsModuleOverItself}\hypertarget{CAstAlgebraAsModuleOverItself}{} Every $C^\ast$-algebra $A$ is a Hilbert $A$-module over itself when equipped by with the $A$-valued inner product given simply by \begin{displaymath} \langle a_1,a_2\rangle \coloneqq a_1^\ast \cdot a \;\;\in A \end{displaymath} \end{example} \begin{remark} \label{}\hypertarget{}{} In view of the archetypical example \ref{FromAHilbertSpaceBundle}, example \ref{CAstAlgebraAsModuleOverItself} may be interpreted as exhibiting the trivial [[complex line bundle]] over whatever space $A$ is the $C^\ast$-algebra of functions on (an actual [[topological space]] if $A$ is a [[commutative C\emph{-algebra]] or else the [[noncommutative topology]] defined as the formal dual of $A$).} \end{remark} \begin{example} \label{L2}\hypertarget{L2}{} For $A \in$ [[C\emph{Alg]], let $\ell^2 A$ be the space of those [[sequences]] $\{a_n \in A\}_{n \in \mathbb{N}}$ of elements in $A$ such that the [[series]] $\sum_n a_n^\ast a_n$ [[convergence|converges]]. This is a Hilbert $A$-module when equipped with the degreewise $A$-[[C}-representation]], with the $A$-valued inner product \begin{displaymath} \langle \{a_n\}, \{b_n\}\rangle \coloneqq \sum_n a_n^\ast b_n \end{displaymath} and after [[completion]] with under the induced [[norm]]. This $\ell^2 A$ is sometimes called the \textbf{standard Hilbert $A$-module} over $A$. \end{example} \begin{remark} \label{TheTrivialHilbertBundleAndL2}\hypertarget{TheTrivialHilbertBundleAndL2}{} In view of example \ref{FromAHilbertSpaceBundle} we may think of example \ref{L2} as exhibiting the trivial countably-infinite dimensional [[Hilbert space]] bundle over the space dual to $A$. This is because the [[unitary group]] $U(\mathcal{H})$ of an infinite-dimensional [[separable Hilbert space]] $\mathcal{H}$ is [[contractible topological space|contractible]] (by [[Kuiper's theorem]]), hence so is the [[classifying space]], and so unitary $\mathcal{H}$-fiber bundles (over actual topological spaces) all trivializable. Since moreover $\mathcal{H} \simeq \ell^2(\mathbb{C})$ the Hilbert module of example \ref{FromAHilbertSpaceBundle} for the trivial $\mathcal{H}$-bundle over $C_0(X)$ is equivalent to $\ell^2(C_0(X))$. Example \ref{L2} generalizes this to arbitrary $C*$-algebras $A$. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{algebras_of_adjointable_operators_on_a_hilbert_module}{}\subsubsection*{{$C^\ast$-algebras of adjointable operators on a Hilbert module}}\label{algebras_of_adjointable_operators_on_a_hilbert_module} \begin{defn} \label{AdjointableOperator}\hypertarget{AdjointableOperator}{} For $A \in$ [[C\emph{Alg]] and $H$ a Hilbert $A$-module, def. \ref{HilbertCStarModule}, a $\mathbb{C}$-[[linear operator]] $F \colon H \to H$ is called \textbf{adjointable} if there is an [[adjoint operator]] $F^\ast \colon H \to H$ with respect to the $A$-valued inner product in the sense that} \begin{displaymath} \langle F -, -\rangle = \langle -,F^\ast -\rangle \,. \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} The adjointable operators on a Hilbert $A$-module, def. \ref{AdjointableOperator}, form a [[Banach algebra|Banach]] [[star-algebra]]. For $A$ itself regarded as a Hilbert $A$-module as in example \ref{CAstAlgebraAsModuleOverItself}, this is the [[multiplier algebra]] of $A$. \end{prop} \hypertarget{compact_operators_on_a_hilbert_module}{}\subsubsection*{{Compact operators on a Hilbert $C^\ast$-module}}\label{compact_operators_on_a_hilbert_module} \begin{defn} \label{CompactOperator}\hypertarget{CompactOperator}{} For $H_1, H_2$ two Hilbert $C^\ast$-modules, an adjointable operator $T \colon H_1 \to H_2$, def. \ref{AdjointableOperator}, is of \textbf{finite rank} if it is of the form \begin{displaymath} T \colon v \mapsto \sum_{i = 1}^n w_i \langle v_i, v\rangle \end{displaymath} for vectors $v_i \in H_1$ and $w_i \in H_2$. $T$ is called a \textbf{generalized compact operator} if it is in the norm-closure of finite-rank operators. \end{defn} Typically one writes $\mathcal{K}(H_1, H_2)$ for the space of generalized complact operators. \hypertarget{fredholm_operators}{}\subsubsection*{{Fredholm operators}}\label{fredholm_operators} \begin{defn} \label{}\hypertarget{}{} An operator $F \colon H_1 \to H_2$ is called a \textbf{generalized [[Fredholm operator]]} if there exists an operator $S \colon H_2 \to H_1$ (then called a [[parametrix]] for $F$) such that both $F \circ S - id_{H_2}$ and $S \circ F - id_{H_1}$ are [[compact operators]] according to def. \ref{CompactOperator}. \end{defn} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item Kasparov's [[KK-theory]] is formulated in terms of Hilbert (bi)modules \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Hilbert bimodule]] \item [[Mishchenko-Fomenko index theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Hilbert $C^\ast$-modules were introduced by [[Irving Kaplansky]] in \begin{itemize}% \item Irving Kaplansky, \emph{Modules over operator algebras}, Amer. J. Math. \textbf{75} (1953) 839--853 \end{itemize} Contemporary references are \begin{itemize}% \item [[Bruce Blackadar]], \emph{[[K-Theory for Operator Algebras]]}, section 13 \item wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Hilbert_C*-module}{Hilbert $C^\ast$-module}} \item E. Christopher Lance, \emph{Hilbert $C^\ast$-modules, A toolkit for operator algebraists}, London Math. Soc. Lec. Note Ser. \textbf{210}, Cambridge Univ. Press 1995 \end{itemize} [[!redirects Hilbert module]] [[!redirects Hilbert modules]] [[!redirects Hilbert C\emph{-module]] [[!redirects Hilbert C}-modules]] [[!redirects Hilbert C-star-module]] [[!redirects Hilbert C-star-modules]] \end{document}