\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Hořava-Witten theory} \begin{quote}% This entry is about the conjectured relation ([[duality in string theory|duality]]) between [[M-theory]] at [[MO9]]-planes and [[heterotic string theory]] on these. For the relation of [[M-theory]] [[KK-compactification|KK-compactified]] on a [[K3-surface]] and [[heterotic string theory]] on a [[3-torus]] see instead at \emph{[[duality between M/F-theory and heterotic string theory]]}. \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{duality_in_string_theory}{}\paragraph*{{Duality in string theory}}\label{duality_in_string_theory} [[!include duality in string theory -- contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{duality_between_mtheory_and_heterotic_string_theory}{Duality between M-theory and heterotic string theory}\dotfill \pageref*{duality_between_mtheory_and_heterotic_string_theory} \linebreak \noindent\hyperlink{duality_between_mtheory_and_type_i_string_theory}{Duality between M-theory and type I string theory}\dotfill \pageref*{duality_between_mtheory_and_type_i_string_theory} \linebreak \noindent\hyperlink{duality_between_heterotic_and_type_i_string_theory}{Duality between heterotic and type I string theory}\dotfill \pageref*{duality_between_heterotic_and_type_i_string_theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{BoundaryConditions}{Boundary conditions}\dotfill \pageref*{BoundaryConditions} \linebreak \noindent\hyperlink{related_concepts_2}{Related concepts}\dotfill \pageref*{related_concepts_2} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ReferencesGauginoCondensation}{Gaugino condensation and supersymmetry breaking}\dotfill \pageref*{ReferencesGauginoCondensation} \linebreak \noindent\hyperlink{generalization_to_mtheory_on_}{Generalization to M-theory on $S^1/G_{HW} \times \mathbb{H}/G_{ADE}$}\dotfill \pageref*{generalization_to_mtheory_on_} \linebreak \noindent\hyperlink{for_7d_supergravity}{For 7d supergravity}\dotfill \pageref*{for_7d_supergravity} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} There is an observation by \hyperlink{HoravaWitten95}{Hoava--Witten 95}, \hyperlink{HoravaWitten96}{Hoava--Witten 96} which suggests that [[M-theory]] on an [[cyclic group of order 2|Z/2]]-[[orbifold]] (actually a [[higher orientifold]]) of the form $X_{10} \times (S^1 \slash \mathbb{Z}_2))$ in ``[[duality in string theory|dual]]'' to [[heterotic string theory]] on its [[boundary]] ([[fixed point]]) ``[[M9-brane]]''. Therefore one also speaks of ``heterotic [[M-theory]]'' (\hyperlink{Ovrut02}{Ovrut 02}). \begin{quote}% from \hyperlink{Kashima00}{Kashima 00} \end{quote} In the above the circle factor is taken to be the [[circle]] [[fiber]] over the 10d [[type IIA string theory|type IIA]] [[spacetime]]. If instead one considers another of the spatial dimensions to be compactified on $S^1\sslash \mathbb{Z}_2$, then, after [[T-duality]] ([[F-theory]]) result is supposed to be [[type I string theory]]. In this case the intersection of the [[M2-brane]] with the [[M9-brane]] (the latter now wrapping the M-theory circle fiber) is called the \emph{[[E-string]]}. More in detail: One considers the [[KK-compactification]] of [[M-theory]] on a [[cyclic group of order 2|Z/2]]-[[orbifold]] of a [[torus]], hence of the [[Cartesian product]] of two [[circles]] \begin{displaymath} \itexarray{ & S^1_A &\times& S^1_B \\ \text{radius}: & R_{11} && R_{10} } \end{displaymath} such that the reduction on the first factor $S^1_A$ corresponds to the [[duality between M-theory and type IIA string theory]], hence so that subsequent [[T-duality]] along the second factor yields [[type IIB string theory]] (in its [[F-theory]]-incarnation). Now the diffeomorphism which exchanges the two circle factors and hence should be a symmetry of M-theory is interpreted as [[S-duality]] in [[type II string theory]]: \begin{displaymath} IIB \overset{S}{\leftrightarrow} IIB \end{displaymath} \begin{quote}% graphics taken from \hyperlink{HoravaWitten95}{Horava-Witten 95, p. 15} \end{quote} If one considers this situation additionally with a $\mathbb{Z}/2\mathbb{Z}$-[[orbifold]] quotient of the first circle factor, one obtains the [[duality between M-theory and heterotic string theory]] ([[Horava-Witten theory]]). If instead one performs it on the second circle factor, one obtains [[type I string theory]]. Here in both cases the [[involution]] [[action]] is by [[reflection]] of the circle at a line through its center. Hence if we identify $S^1 \simeq \mathbb{R} / \mathbb{Z}$ then the action is by multiplication by /1 on the [[real line]]. In summary: M-theory on \begin{itemize}% \item $(S^1_A \sslash \mathbb{Z}_2 ) \times S^1_B$ yields [[heterotic string theory]] \item $S^1_A \times \left( S^1_B \sslash \mathbb{Z}_2 \right)$ yields [[type I string theory]] \end{itemize} Hence the [[S-duality]] that swaps the two circle factors corresponds to \emph{[[duality between type I and heterotic string theory]]}. \begin{displaymath} \itexarray{ HE &\overset{KK/\mathbb{Z}^A_2}{\leftrightarrow}& M &\overset{KK/\mathbb{Z}^B_2}{\leftrightarrow}& I' \\ \mathllap{T}\updownarrow && && \updownarrow \mathrlap{T} \\ HO && \underset{\phantom{A}S\phantom{A}}{\leftrightarrow} && I } \end{displaymath} \begin{quote}% graphics taken from \hyperlink{HoravaWitten95}{Horava-Witten 95, p. 16} \end{quote} \hypertarget{duality_between_mtheory_and_heterotic_string_theory}{}\subsubsection*{{Duality between M-theory and heterotic string theory}}\label{duality_between_mtheory_and_heterotic_string_theory} Here each of the two copies of the heterotic gauge theory is a ``[[hidden sector]]'' with respect to the other. The orbifold equivariance condition of the [[supergravity C-field]] is that discussed at \emph{[[orientifold]]} (there for the [[B-field]]). Therefore it has to vanish at the two fixed fixed points of the $\mathbb{Z}_2$-action. Thereby the quantization condition \begin{displaymath} [2G_4] = 2 [c_2] - [\frac{1}{2} p_1] \end{displaymath} on the [[supergravity C-field]] becomes the condition for the [[Green-Schwarz mechanism]] of the [[heterotic string theory]] on the ``boundary'' (the orbifold fixed points). \hypertarget{duality_between_mtheory_and_type_i_string_theory}{}\subsubsection*{{Duality between M-theory and type I string theory}}\label{duality_between_mtheory_and_type_i_string_theory} [[duality between M-theory and type I string theory]] originally suggested in (\hyperlink{HoravaWitten95}{Horava-Witten 95, section 3}) Further evidence is reviewed in \hyperlink{APT98}{APT 98} \hypertarget{duality_between_heterotic_and_type_i_string_theory}{}\subsubsection*{{Duality between heterotic and type I string theory}}\label{duality_between_heterotic_and_type_i_string_theory} [[duality between heterotic and type I string theory]] via [[S-duality]] in the [[F-theory]]-picture\ldots{} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[duality between F-theory and heterotic string theory]] \end{itemize} [[!include KK-compactifications of M-theory -- table]] \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{BoundaryConditions}{}\subsubsection*{{Boundary conditions}}\label{BoundaryConditions} The [[supergravity C-field]] $\hat G_4$ is supposed to vanish, and \emph{differentially} vanish at the boundary in the HW model, meaning that also the local connection 3-form $C_3$ vanishes there. The argument is roughly as follows (similar for as in \hyperlink{Falkowski}{Falkowski, section 3.1}). The [[higher dimensional Chern-Simons theory|higher Chern-Simons term]] \begin{displaymath} C_3 \mapsto C_3 \wedge G_4 \wedge G_4 \end{displaymath} in the [[Lagrangian]] of [[11-dimensional supergravity]] is supposed to be well-defined on fields on the [[orbifold]] and hence is to be $\mathbb{Z}_2$-invariant. Let $\iota_{11}$ be the canonical vector field along the circle factor. Then the component of $G \wedge G$ which is annihilated by the contraction $\iota_{11}$ is necessarily even, so the component $d x^{11}\wedge \iota_11 C_3$ is also even. It follows that also $d x^{11}\wedge \iota_11 G_4$ is even. Moreover, the kinetic term \begin{displaymath} C \mapsto G \wedge \star G \end{displaymath} is to be invariant. With the above this now implies that the components of $G$ annihiliated by $\iota_{11}$ is odd, because so is the mixed component of the [[metric]] tensor. This finally implies that the restriction of $C_3$ to the orbifold fixed points has to be closed. \hypertarget{related_concepts_2}{}\subsection*{{Related concepts}}\label{related_concepts_2} \begin{itemize}% \item [[duality in string theory]] \begin{itemize}% \item [[duality between F-theory and heterotic string theory]] \end{itemize} \item [[11-dimensional supergravity]] \item [[M-theory]], [[heterotic string theory]] \item [[M9-brane]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The original articles are \begin{itemize}% \item [[Petr Hořava]], [[Edward Witten]], \emph{Heterotic and Type I string dynamics from eleven dimensions}, Nucl. Phys. B460 (1996) 506 (\href{http://arxiv.org/abs/hep-th/9510209}{arXiv:hep-th/9510209}) \item [[Petr Hořava]], [[Edward Witten]], \emph{Eleven dimensional supergravity on a manifold with boundary}, Nucl. Phys. B475 (1996) 94 (\href{http://arxiv.org/abs/hep-th/9603142}{arXiv:hep-th/9603142}) \end{itemize} Review is in \begin{itemize}% \item [[Piyush Kumar]], \emph{Hoava-Witten theory} (2004) (\href{http://theory.uchicago.edu/~sethi/Teaching/P484-W2004/hwitten.pdf}{pdf}) \item [[Paul Townsend]], \emph{Four Lectures on M-Theory} (\href{http://arxiv.org/abs/hep-th/9612121}{arXiv:hep-th/9612121}). \item [[Burt Ovrut]], \emph{Lectures on Heterotic M-Theory} (\href{http://arxiv.org/abs/hep-th/0201032}{arXiv:hep-th/0201032}) \item [[Adam Falkowski]], section 3 of \emph{Five dimensional locally supersymmetric theories with branes}, Master Thesis, Warsaw ([[FalkowskiLecture.pdf:file]]) \end{itemize} The [[black brane|black]] [[M2-brane]] solution in HW-theory, supposedly yielding the [[black brane|black]] [[heterotic string]] at the intersection with the [[M9-brane]] is discussed in \begin{itemize}% \item Zygmunt Lalak, Andr\'e{} Lukas, [[Burt Ovrut]], \emph{Soliton Solutions of M-theory on an Orbifold}, Phys. Lett. B425 (1998) 59-70 (\href{https://arxiv.org/abs/hep-th/9709214}{arXiv:hep-th/9709214}) \item Ken Kashima, \emph{The M2-brane Solution of Heterotic M-theory with the Gauss-Bonnet $R^2$ terms}, Prog.Theor.Phys. 105 (2001) 301-321 (\href{https://arxiv.org/abs/hep-th/0010286}{arXiv:hep-th/0010286}) \end{itemize} Explicit discussion of [[worldvolume]] [[CFT]] of the [[M2-branes]] ending on the HW fixed points and becoming [[heterotic strings]] is discussed, via the [[BLG model]], in \begin{itemize}% \item [[Neil Lambert]], \emph{Heterotic M2-branes}, Physics Letters B Volume 749, 7 October 2015, Pages 363--367 (\href{http://arxiv.org/abs/1507.07931}{arXiv:1507.07931}) \end{itemize} After [[KK-reduction]] to [[5d supergravity]] there is a corresponding 5d mechanism, see the references \href{5-dimensional+supergravity#ReferencesHWCompactification}{there}. Disucussion of the [[duality between heterotic and type I string theory]] includes \begin{itemize}% \item I. Antoniadis, H. Partouche, T.R. Taylor, \emph{Lectures on Heterotic-Type I Duality}, Nucl.Phys.Proc.Suppl. 61A (1998) 58-71; Nucl.Phys.Proc.Suppl. 67 (1998) 3-1 \end{itemize} Discussion of [[string phenomenology]] in Horava-Witten theory: \begin{itemize}% \item [[Burt Ovrut]], \emph{Vacuum Constraints for Realistic Heterotic M-Theories} (\href{https://arxiv.org/abs/1811.08892}{arXiv:1811.08892}) \end{itemize} \hypertarget{ReferencesGauginoCondensation}{}\subsubsection*{{Gaugino condensation and supersymmetry breaking}}\label{ReferencesGauginoCondensation} Discussion of [[gaugino condensation]] and [[supersymmetry breaking]] in Horava-Witten theory, where the two heterotic [[MO9-branes]] provide a natural mechanism for [[supersymmetry breaking]] on one (the physical brane) by gaugino condensation on the other (the ``dark sector'' brane): lecture notes: \begin{itemize}% \item [[Hans-Peter Nilles]], \emph{Gaugino Condensation and SUSY Breakdown}, Lectures at Cargese School of Physics and Cosmology, Cargese, France, August 2003 (\href{https://arxiv.org/abs/hep-th/0402022}{arXiv:hep-th/0402022}) \end{itemize} original articles: \begin{itemize}% \item I. Antoniadis, M. Quiros, \emph{On the M-theory description of gaugino condensation}, Phys.Lett. B416 (1998) 327-333 (\href{https://arxiv.org/abs/hep-th/9707208}{arXiv:hep-th/9707208}) \item I. Antoniadis, M. Quiros, \emph{Supersymmetry breaking in M-theory and gaugino condensation}, Nucl.Phys. B505 (1997) 109-122 (\href{https://arxiv.org/abs/hep-th/9705037}{arXiv:hep-th/9705037}) \item [[André Lukas]], [[Burt Ovrut]], [[Daniel Waldram]], \emph{Gaugino condensation in M theory on $S^1/Z_2$}, Phys. Rev. D 57, 7529 (1998) (\href{https://arxiv.org/abs/hep-th/9711197}{arXiv:hep-th/9711197}, \href{https://doi.org/10.1103/PhysRevD.57.7529}{doi:10.1103/PhysRevD.57.7529}) \item [[André Lukas]], [[Burt Ovrut]], [[Daniel Waldram]], \emph{Five-Branes and Supersymmetry Breaking in M-Theory}, JHEP 9904:009, 1999 (\href{https://arxiv.org/abs/hep-th/9901017}{arXiv:hep-th/9901017}) \end{itemize} specifically for [[M-theory on S1/G\_HW times H/G\_ADE]]: \begin{itemize}% \item Zygmunt Lalak, Steven Thomas, \emph{Gaugino Condensation, Moduli Potentials and Supersymmetry Breaking in M-Theory Models}, Nuclear Physics B Volume 515, Issues 1–2, 30 March 1998, Pages 55-72 Nuclear Physics B (\href{https://arxiv.org/abs/hep-th/9707223}{hep-th/9707223}, ) \end{itemize} \hypertarget{generalization_to_mtheory_on_}{}\subsubsection*{{Generalization to M-theory on $S^1/G_{HW} \times \mathbb{H}/G_{ADE}$}}\label{generalization_to_mtheory_on_} Generalization to [[M-theory on S1/G\_HW times H/G\_ADE]]: \begin{itemize}% \item Zygmunt Lalak, Steven Thomas, \emph{Gaugino Condensation, Moduli Potentials and Supersymmetry Breaking in M-Theory Models} (\href{https://arxiv.org/abs/hep-th/9707223}{hep-th/9707223}) \item V. Kaplunovsky, J. Sonnenschein,[[Stefan Theisen]], S. Yankielowicz, \emph{On the Duality between Perturbative Heterotic Orbifolds and M-Theory on $T^4/Z_N$} (\href{https://arxiv.org/abs/hep-th/9912144}{arXiv:hep-th/9912144}) \item E. Gorbatov, V.S. Kaplunovsky, J. Sonnenschein, [[Stefan Theisen]], S. Yankielowicz, \emph{On Heterotic Orbifolds, M Theory and Type I' Brane Engineering}, JHEP 0205:015, 2002 (\href{https://arxiv.org/abs/hep-th/0108135}{arXiv:hep-th/0108135}) \item [[Davide Gaiotto]], [[Alessandro Tomasiello]], \emph{Holography for $(1,0)$ theories in six dimensions}, JHEP12(2014)003 (\href{https://arxiv.org/abs/1404.0711}{arXiv:1404.0711}) \item Michele Del Zotto, [[Jonathan Heckman]], [[Alessandro Tomasiello]], [[Cumrun Vafa]], Section 6 of: \emph{6d Conformal Matter}, JHEP02(2015)054 (\href{https://arxiv.org/abs/1407.6359}{arXiv:1407.6359}) \item [[John Huerta]], [[Hisham Sati]], [[Urs Schreiber]], Example 2.2.7 of: \emph{[[schreiber:Equivariant homotopy and super M-branes|Real ADE-equivariant (co)homotopy and Super M-branes]]}, CMP (2019) (\href{https://arxiv.org/abs/1805.05987}{arXiv:1805.05987}, \href{http://link.springer.com/article/10.1007/s00220-019-03442-3}{doi:10.1007/s00220-019-03442-3}) \end{itemize} \hypertarget{for_7d_supergravity}{}\subsubsection*{{For 7d supergravity}}\label{for_7d_supergravity} Discussion for [[7d supergravity]]: \begin{itemize}% \item Tony Gherghetta, [[Alex Kehagias]], \emph{Anomaly Cancellation in Seven-Dimensional Supergravity with a Boundary}, Phys.Rev. \textbf{D68} (2003), 065019, (\href{http://arxiv.org/abs/hep-th/0212060}{arXiv:hep-th/0212060}) \item Spyros D. Avramis, [[Alex Kehagias]], \emph{Gauged $D=7$ Supergravity on the $S^1/\mathbb{Z}_2$ Orbifold} (\href{https://arxiv.org/abs/hep-th/0407221}{arXiv:hep-th/0407221}) \item T.G. Pugh, [[Ergin Sezgin]], [[Kellogg Stelle]], \emph{$D=7$ / $D=6$ Heterotic Supergravity with Gauged R-Symmetry} (\href{https://arxiv.org/abs/1008.0726}{arXiv:1008.0726}) \end{itemize} [[!redirects Hořava-Witten theory]] [[!redirects Hořava–Witten theory]] [[!redirects Hořava--Witten theory]] [[!redirects Horava-Witten theory]] [[!redirects Horava–Witten theory]] [[!redirects Horava--Witten theory]] [[!redirects heterotic M-theory]] [[!redirects duality between M-theory and heterotic string theory]] [[!redirects duality between heterotic string theory and M-theory]] [[!redirects duality heterotic string theory and M-theory]] [[!redirects duality between M-theory and type I string theory]] [[!redirects duality between type I string theory and M-theory]] [[!redirects HET - M]] [[!redirects HET - M duality]] [[!redirects M - HET]] [[!redirects M - HET duality]] \end{document}