\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Hodge structure} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{complex_geometry}{}\paragraph*{{Complex geometry}}\label{complex_geometry} [[!include complex geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{pure_hodge_structure}{Pure Hodge structure}\dotfill \pageref*{pure_hodge_structure} \linebreak \noindent\hyperlink{mixed_hodge_structure}{Mixed Hodge structure}\dotfill \pageref*{mixed_hodge_structure} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ForAKaehlerManifold}{On the cohomology of a K\"a{}hler manifold}\dotfill \pageref*{ForAKaehlerManifold} \linebreak \noindent\hyperlink{ForAComplexAnalyticSpace}{On the cohomology of a complex analytic space}\dotfill \pageref*{ForAComplexAnalyticSpace} \linebreak \noindent\hyperlink{OnAnAbelianGroup}{Generally on an abelian group}\dotfill \pageref*{OnAnAbelianGroup} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} \hypertarget{pure_hodge_structure}{}\subsubsection*{{Pure Hodge structure}}\label{pure_hodge_structure} A \emph{Hodge structure} (or \emph{pure Hodge structure}, for emphasis) is a (bi-)[[graded object|grading]] structure on [[cohomology groups]] -- called a \emph{Hodge decomposition} -- of the kind that is exhibited by the [[de Rham cohomology]]/complex-[[ordinary cohomology]] of [[compact topological space|compact]] [[Kähler manifolds]], according to the [[Hodge theorem]]. A Hodge structure is said to be \emph{of weight $d$} if it behaves like the cohomology of a K\"a{}hler manifold of [[dimension]] $d$. If instead of considering a single [[cohomology group]] one considers the cohomology groups of a parameterized collection of spaces -- hence the cohomology \emph{[[sheaves]]/[[stacks]]} -- then one speaks of \emph{variation of Hodge structure} (of a given weight). By a central theorem of Hodge theory (recalled as theorem \ref{HodgeFiltrationForComplexSpaceReproducesKaehlerHodgeStructure} below) the traditional (and original) [[filtered complex|filtration]] on the complex cohomology of a [[Kähler manifold]] induced by the [[harmonic differential forms]] generalizes to a [[filtered complex|filtration]] of the complex-valued [[ordinary cohomology]] of any [[complex analytic space]] which is simply given by the canonical degree-filtration of the [[holomorphic de Rham complex]]. This means that [[ordinary differential cohomology]] in the guise of [[Deligne cohomology]] is nothing but the [[homotopy pullback]] of a stage of the Hodge filtration along the `` [[Chern character]] '' map from integral to complex cohomology. (A point of view highlighted for instance in \hyperlink{PetersSteenbrink08}{Peters-Steenbrink 08, section 7.2}). Viewed this way Hodge structures are filtrations of stages of differential form cycle refinements of [[Chern characters]] that appear in the general definition/characterization of [[differential cohomology]], as discussed at \emph{[[differential cohomology hexagon]]} starting around the section \emph{\href{differential+cohomology+diagram#DeRhamCoefficients}{de Rham coefficients}} This modern point of view is also crucial for instance in the characterization of an [[intermediate Jacobian]] (see there) as the subgroup of [[Deligne cohomology]] that is in the [[kernel]] of the map to Hodge-filtering stage of ordinary cohomology. See at \emph{\href{intermediate+Jacobian#CharacterizationAsHodgeTrivialDeligneCohomology}{intermediate Jacobian -- characterization as Hodge-trivial Deligne cohomology}}. \hypertarget{mixed_hodge_structure}{}\subsubsection*{{Mixed Hodge structure}}\label{mixed_hodge_structure} A \emph{mixed Hodge structure} is a [[filtration]] on [[cohomology groups]] -- called a \emph{[[Hodge filtration]]} -- such that the [[associated graded object]] has pure Hodge structure of weight $k$ in each degree $k$. The archetypical example exhibiting this is the cohomology of [[complex varieties]] that have singularities (\hyperlink{Deligne71}{Deligne 71} \hyperlink{Deligne74}{Deligne 74}). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Historically, Hodge structures originate in the special structure induced on the [[de Rham cohomology|de Rham]] [[cohomology groups]] of a compact [[Kähler manifold]] by the existence of [[harmonic differential forms]]. Below we first discuss this canonical Hodge structure \begin{itemize}% \item \hyperlink{ForAKaehlerManifold}{on the cohomology of a K\"a{}hler manifold} \end{itemize} But it turns out that this Hodge structure only depends on the natural degree-[[filtration]] on the [[holomorphic de Rham complex]] and hence more generally there is canonical Hodge structure \begin{itemize}% \item \hyperlink{ForAComplexAnalyticSpace}{on the cohomology of a complex analytic space}. \end{itemize} Abstracting from here one defines Hodges structures \begin{itemize}% \item \hyperlink{OnAnAbelianGroup}{generally on abelian groups}. \end{itemize} \hypertarget{ForAKaehlerManifold}{}\subsubsection*{{On the cohomology of a K\"a{}hler manifold}}\label{ForAKaehlerManifold} Let $X$ be a [[compact topological space|compact]] [[Kähler manifold]] and write $H^{p,q}(X)$ for its space of [[harmonic differential forms]], equivalently, via the [[Hodge isomorphism]], its [[Dolbeault cohomology]] in bidegree $(p,q)$. Notice that by the [[de Rham theorem]] there are canonical maps \begin{displaymath} H^{p,q}(X)\to H^{p+q}(X,\mathbb{C}) \end{displaymath} to [[ordinary cohomology]] of $X$ with complex [[coefficients]]. \begin{defn} \label{TraditionalHodgeFiltration}\hypertarget{TraditionalHodgeFiltration}{} The \emph{Hodge filtration} on the cohomology of $X$ is the [[filtered complex]] structure given by the [[direct sum]] \begin{displaymath} F^p H^k(X, \mathbb{C}) \coloneqq \underset{k-q \geq p}{\oplus} H^{k-q,q}(X) \,. \end{displaymath} \end{defn} \begin{example} \label{}\hypertarget{}{} The full Hodge filtration of degree-2 cohomology is \begin{displaymath} \begin{aligned} F^0 H^2(X,\mathbb{C}) & = H^{0,2}(X) \oplus H^{1,1}(X) \oplus H^{2,0}(X) \\ F^1 H^2(X,\mathbb{C}) & = \;\;\;\;\;\;\; H^{1,1}(X) \oplus H^{2,0}(X) \\ F^2 H^2(X,\mathbb{C}) & = \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; H^{2,0}(X) \end{aligned} \end{displaymath} \end{example} \begin{example} \label{}\hypertarget{}{} For all $p$ the mid-dimensional Hodge filtration stage in even total degree is \begin{displaymath} F^p H^{2p} = H^{p,p}(X) \oplus H^{p+1,p-1}(X) \oplus \cdots \oplus H^{2p,0}(X) \,. \end{displaymath} \end{example} \hypertarget{ForAComplexAnalyticSpace}{}\subsubsection*{{On the cohomology of a complex analytic space}}\label{ForAComplexAnalyticSpace} \begin{defn} \label{}\hypertarget{}{} For $X$ a [[complex analytic space]], write \begin{displaymath} \Omega^\bullet_X \coloneqq (\mathcal{O}_X \stackrel{\partial}{\longrightarrow} \Omega^1_X \stackrel{\partial}{\longrightarrow} \Omega^2(X) \stackrel{\partial}{\longrightarrow} \cdots) \end{displaymath} for its [[holomorphic de Rham complex]]. \end{defn} \begin{remark} \label{}\hypertarget{}{} Notice the \href{holomorphic+de+Rham+complex#RelationToComplexCohomology}{relation to complex cohomology} given by \begin{displaymath} H^k(X,\mathbb{C}) \simeq H^k(X,\Omega^\bullet_X) \,. \end{displaymath} \end{remark} \begin{remark} \label{}\hypertarget{}{} The [[holomorphic de Rham complex]] is naturally [[filtered object|filtered]] by degree with the $p$th filtering stage being \begin{displaymath} F^p \Omega^\bullet_X \coloneqq (0 \to \cdots \to \Omega^p_X \stackrel{\partial}{\longrightarrow} \Omega^{p+1} \stackrel{\partial}{\longrightarrow} \cdots) \,. \end{displaymath} Notice that here $\Omega^p$ is still regarded as sitting in degree $-p$, one just replaces by 0 in the holomorphic de Rham complex the groups of differential forms of degree less than $p$. \end{remark} \begin{defn} \label{HodgeFiltrationForComplexSpace}\hypertarget{HodgeFiltrationForComplexSpace}{} The \emph{Hodge filtration} on $H^\bullet(X,\mathbb{C})$ is defined to be the [[filtration]] with $p$th stage the [[image]] of the [[hypercohomology|hyper]]-[[abelian sheaf cohomology]] with coefficients in the $p$th filtering stage of the holomorphic de Rham complex inside that with coefficients the full de Rham complex: \begin{displaymath} F^p H^k(X,\mathbb{C}) \coloneqq im \left( H^k(X, F^p \Omega^\bullet_X) \to H^k(X, \Omega^\bullet_X) \right) \end{displaymath} \end{defn} (e.g. \hyperlink{Voisin02}{Voisin 02, def. 8.2}, \hyperlink{PetersSteenbrink08}{Peters-Steenbrink 08, def. 2.21}). \begin{theorem} \label{HodgeFiltrationForComplexSpaceReproducesKaehlerHodgeStructure}\hypertarget{HodgeFiltrationForComplexSpaceReproducesKaehlerHodgeStructure}{} When the compact [[complex manifold]] $X$ happens to have the structure of a [[Kähler manifold]] then the [[Frölicher spectral sequence]] degenerates at the $E_1$ page which implies that def. \ref{HodgeFiltrationForComplexSpace} coincides with the traditional definition via [[harmonic differential forms]], def. \ref{TraditionalHodgeFiltration}: \begin{displaymath} \underset{k-q \geq p}{\oplus} H^{k-q,q}(X) \simeq im \left( H^k(X, F^p \Omega^\bullet_X) \to H^k(X, \Omega^\bullet_X) \right) \,. \end{displaymath} \end{theorem} (e.g. \hyperlink{Voisin02}{Voisin 02, remark 8.29}, \hyperlink{Voisin}{Voisin, 1.1.2} \hyperlink{PetersSteenbrink08}{Peters-Steenbrink 08, prop 2.22}). \begin{remark} \label{FrolicherEquivalenceInComponents}\hypertarget{FrolicherEquivalenceInComponents}{} The equivalence in theorem \ref{HodgeFiltrationForComplexSpaceReproducesKaehlerHodgeStructure} is exhibited by the following morphism. Write \begin{displaymath} tot(\Omega^{\bullet \geq p, \bullet}, \mathbf{d}= \partial + \bar \partial) \end{displaymath} for the holomorphically truncated [[de Rham complex]], as indicated, thought of as the [[total complex]] of the [[Dolbeault complex|Dolbeault]] [[double complex]] \begin{displaymath} \itexarray{ \Omega^{p,0} &\stackrel{\bar \partial}{\to}& \Omega^{p-1,1} &\stackrel{\bar \partial}{\to}& \cdots \\ \downarrow^{\mathrlap{\partial }} && \downarrow^{\mathrlap{\partial }} \\ \Omega^{p+1,0} &\stackrel{\bar \partial}{\to}& \Omega^{p,1} &\stackrel{\bar \partial}{\to}& \cdots \\ \downarrow^{\mathrlap{\partial }} && \downarrow^{\mathrlap{\partial }} \\ \vdots && \vdots } \,. \end{displaymath} Since this is in each row the [[Dolbeault resolution]] of the given sheaf of [[holomorphic differential forms]], this total complex is indeed [[quasi-isomorphism|quasi-isomorphic]] to the (truncated) [[holomorphic de Rham complex]]. The total complex is in degree $-k$ given by $\underset{k-q \geq p}{\oplus} \Omega^{k-q, q}$ and hence globally defined closed $(k-q \geq p,q)$-forms naturally inject into \begin{displaymath} H^k(X, tot(\Omega^{\bullet\geq p, \bullet}, \mathbf{d} = \partial + \bar \partial) ) \simeq H^0(X,tot(\Omega^{\bullet\geq p, \bullet}, \mathbf{d} = \partial + \bar \partial)[-k]) \,. \end{displaymath} Therefore given a representative $\alpha \in \Omega^{p,q}_{cl}(X)$ of $[\alpha] \in H^{p,q}(X)$ it is canonically sent along \begin{displaymath} \underset{k-q\geq p}{\oplus} \Omega^{p,q}_{cl}(X) \simeq \underset{k-q\geq p}{\oplus} H^0(X, \Omega^{p,q}_{cl}) \to H^0(X,tot(\Omega^{\bullet\geq p, \bullet}, \mathbf{d} = \partial + \bar \partial)[-k]) \,. \end{displaymath} This map exhibits the equivalence in theorem \ref{HodgeFiltrationForComplexSpaceReproducesKaehlerHodgeStructure} (e.g. \hyperlink{Voisin}{Voisin, section 1.1.2}). Dually, \begin{displaymath} \Omega_{hol}^{\leq k} \simeq tot( \Omega^{\bullet \leq k, \bullet}) \,. \end{displaymath} This plays a role in the discussion of [[intermediate Jacobians]], where for $dim_{\mathbb{C}}(X)= k+1$ we have \begin{displaymath} H^{2k+1}(X,\mathbb{R}) \simeq H^{2k+1}(X,\mathbb{C}) / F^{k+1} H^{2k+1}(X,\mathbb{C}) \simeq H^{2k+1}(X, \Omega_{hol}^{\bullet \leq k}) \,. \end{displaymath} Here a real differential $(2k+1)$-form \begin{displaymath} \alpha = \overline{\alpha^{0,2k+1}} + \overline{\alpha^{1, 2k}} + \cdots + \alpha^{1, 2k} + \alpha^{0,2k+1} \end{displaymath} injects via its pieces in \begin{displaymath} \Omega^{p \leq k, 2k+1-p}(X) \simeq H^0(X, \Omega^{p \leq k, 2k+1-p}) \to H^0(X, tot(\Omega^{\bullet \leq k, \bullet})[-k]) \simeq H^k(\Omega_{hol}^{\bullet\leq k}) \,. \end{displaymath} \end{remark} \hypertarget{OnAnAbelianGroup}{}\subsubsection*{{Generally on an abelian group}}\label{OnAnAbelianGroup} \begin{defn} \label{HodgeStructureOfWeightk}\hypertarget{HodgeStructureOfWeightk}{} For $H_{\mathbb{Z}}$ an [[abelian group]], a \emph{Hodge structure} of \emph{weight} $k \in \mathbb{Z}$ on $H_{\mathbb{Z}}$ is a [[direct sum]] decomposition of its [[complexification]] \begin{displaymath} H_{\mathbb{C}}\coloneqq H_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} \end{displaymath} into [[complex vector spaces]] $H^{p,q}$ with $p +q = k$ of the form \begin{displaymath} H_{\mathbb{C}} \simeq \underset{p+q = k}{\oplus} H^{p,q} \end{displaymath} such that $H^{q,p}$ is the [[complex conjugation|complex conjugate]] of $H^{p,q}$: \begin{displaymath} H^{p,q} = \overline{H^{q,p}} \,. \end{displaymath} This is an equality of the underlying sets of the complex vector spaces. \end{defn} With this the above def. \ref{TraditionalHodgeFiltration} has the following verbatim generalization \begin{defn} \label{GeneralHodgeFiltration}\hypertarget{GeneralHodgeFiltration}{} Given a Hodge structure $H_{\mathbb{Z}}, \{H^{p,q}\}$ of weight $k$, def. \ref{HodgeStructureOfWeightk}, then the associated \emph{Hodge filtration} on $H_{\mathbb{C}}$ is the [[filtered complex]] structure given by the [[direct sum]] \begin{displaymath} F^p H_{\mathbb{C}} \coloneqq \underset{k-q \geq p}{\oplus} H^{k-q,q} \,. \end{displaymath} \end{defn} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Hodge theory]], [[nonabelian Hodge theory]], [[noncommutative Hodge theory]] \item [[Hodge symmetry]] \item [[Hodge cycle]] \item [[Hodge cohomology]] \item [[intermediate Jacobian]] \item [[Lefschetz decomposition]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Textbook accounts include \begin{itemize}% \item [[Claire Voisin]], section 7 of \emph{[[Hodge theory and Complex algebraic geometry]] I,II}, Cambridge Stud. in Adv. Math. \textbf{76, 77}, 2002/3 \item [[Claire Voisin]], \emph{Hodge theory and the topology of compact K\"a{}hler and complex projective manifolds} (\href{http://www.math.columbia.edu/~thaddeus/seattle/voisin.pdf}{pdf}) \item [[Chris Peters]], [[Jozef Steenbrink]], \emph{[[Mixed Hodge Structures]]}, Ergebisse der Mathematik (2008) (\href{http://www.arithgeo.ethz.ch/alpbach2012/Peters_Steenbrinck}{pdf}) \end{itemize} The notion of mixed Hodge structures was introduced in \begin{itemize}% \item [[Pierre Deligne]], \emph{Th\'e{}orie de Hodge II}, Publ. Math. I.H.E.S, 40, 5--58 (1971) \item [[Pierre Deligne]], \emph{Th\'e{}orie de Hodge III}, Publ. Math., I. H. E. S, 44, 5-77 (1974) \end{itemize} A review is in section 8.4 of \begin{itemize}% \item [[Alain Connes]], [[Matilde Marcolli]], \emph{[[Noncommutative Geometry, Quantum Fields and Motives]]} \end{itemize} See also \begin{itemize}% \item [[Jozef Steenbrink]], S. Zucker, \emph{Variation of mixed Hodge structure I}, Invent. Math. \textbf{80} (1985), 489-542. \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Hodge_structure}{Hodge structure},} \item [[Donu Arapura]], \emph{Mixed Hodge Structures Associated to Geometric Variations} (\href{http://www.math.purdue.edu/~dvb/preprints/tifr.pdf}{pdf}) \item [[eom]], A.I. Ovseevich \emph{\href{http://eom.springer.de/H/h047470.htm}{Hodge structure}}, \emph{\href{http://eom.springer.de/p/p072140.htm}{Period mapping}}, [[Jozef Steenbrink]], \emph{\href{http://eom.springer.de/v/v096170.htm}{Variation of Hodge structure}} \item [[Michael Hopkins]], [[Gereon Quick]], \emph{Hodge filtered complex bordism} (\href{http://arxiv.org/abs/1212.2173}{arXiv:1212.2173}) \end{itemize} [[!redirects Hodge structures]] [[!redirects pure Hodge structure]] [[!redirects pure Hodge structures]] [[!redirects mixed Hodge structure]] [[!redirects mixed Hodge structures]] [[!redirects Hodge filtration]] [[!redirects Hodge filtrations]] [[!redirects Hodge decomposition]] [[!redirects Hodge decompositions]] [[!redirects Hodge filtering]] [[!redirects Hodge filterings]] [[!redirects variation of Hodge structure]] [[!redirects variation of Hodge structures]] [[!redirects variations of Hodge structure]] [[!redirects variations of Hodge structures]] \end{document}