\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Hopf algebroid over a commutative base} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{higher_groupoid_convolution_algebras_and_nvector_spacesnmodules}{Higher groupoid convolution algebras and n-vector spaces/n-modules}\dotfill \pageref*{higher_groupoid_convolution_algebras_and_nvector_spacesnmodules} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{steenrod_operations_on_cotor_groups}{Steenrod operations on coTor groups}\dotfill \pageref*{steenrod_operations_on_cotor_groups} \linebreak \noindent\hyperlink{GeneralizedDualSteenrodAlgebra}{Generalized dual Steenrod algebra}\dotfill \pageref*{GeneralizedDualSteenrodAlgebra} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak Hopf algebroids have a base and a total algebra (and some other data). There are 3 levels of generality: commutative Hopf algebras (classical case, both base and the total space are commutative), Hopf algebras with commutative base (studied from late 1980s: Maltsionitis, later Connes' school etc) and genuinely noncommutative case for which see [[Hopf algebroid]] and [[bialgebroid]]. \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Just as for [[groups]] and their [[Hopf algebras]], there are \emph{two} ways to assign a \textbf{Hopf algebroid over a commutative base algebra} to a [[groupoid]] $\mathcal{G}_\bullet$: \begin{enumerate}% \item ([[commutative Hopf algebroids]]) with \textbf{commutative but non-co-commutative total algebra}: Form the [[commutative algebra|commutative]] [[algebras of functions]] $C(\mathcal{G}_1)$ and $C(\mathcal{G}_0)$ and regard the operation induced by the partially defined [[composition]] in $\mathcal{G}_\bullet$ as an in general non-co-commutative [[coalgebra]] structure on $C(\mathcal{G}_1)$ over $C(\mathcal{G}_0)$; the graded commutative case appears in algebraic topology and is classical (Steenrod algebra and other examples); \item with \textbf{non-commutative but co-commutative total algebra}: Form the in general non-commutative [[groupoid convolution algebra]] $C_{conv}(\mathcal{G})$ and regard it as a co-commutative [[coalgebra]] over $C(\mathcal{G}_0)$. \end{enumerate} Given an internal [[groupoid]] in the category $Aff_k$ of affine algebraic $k$-[[schemes]], where $k$ is a field, the $k$-algebras of [[global sections]] over the scheme of objects and the scheme of morphisms have an additional structure of a commutative Hopf algebroid. In fact this is an [[dual equivalence|antiequivalence of categories]]. Commutative Hopf algebroids are useful also in a version in [[brave new algebra]] (the work of John Rognes). \hypertarget{higher_groupoid_convolution_algebras_and_nvector_spacesnmodules}{}\subsection*{{Higher groupoid convolution algebras and n-vector spaces/n-modules}}\label{higher_groupoid_convolution_algebras_and_nvector_spacesnmodules} \begin{quote}% under construction \end{quote} We discuss here a natural generalization of the notion of [[groupoid convolution algebras]] to [[higher algebra|higher algebras]] for [[n-groupoid|higher groupoids]]. There may be several sensible such generalizations. The one discussed now follows the principle of iterated [[internalization]] and naturally matches to the concept of [[n-modules]] ([[n-vector spaces]]) as they appear in [[extended prequantum field theory]]. In order to disentangle conceptual from technical aspects, we first discuss [[discrete ∞-groupoid|geometrically discrete higher groupoids]]. The results of this discussion then in particular help to suggest what the right definition of ``higher Lie groupoid'' in the ontext of higher convolution algebras should be in the first place. The consideration are based on the following \begin{remark} \label{}\hypertarget{}{} By the discussion at \emph{[[2-module]]} we may think of the [[2-category]] $k Alg_b$ of $k$-[[associative algebras]] and [[bimodules]] between them as a model for the 2-category [[2Mod]] of $k$-[[2-modules]] that admit a 2-[[basis]] ([[2-vector spaces]]). Hence the groupoid convolution algebra constructiuon is a 2-functor \begin{displaymath} C \;\colon\; Grpd \to 2 Mod \,. \end{displaymath} There is then the following systematic refinement of this to higher groupoids and higher algebra: by the discussion at \emph{[[n-module]]}, 3-modules are algebra objects in [[2Mod]] and maps between them are [[bimodule]] objects in there. An algebra object in $k Alg_b$ is equivalently a [[sesquialgebra]], an algebra equipped with a second algebra structure up to coherent homotopy, that is exhibited by structure bimodules. Special cases of this are [[bialgebras]], for which these structure bimodules come from actual algebra homomorphisms. Examples of these in turn are [[Hopf algebras]]. These we naturally re-discover as special higher groupoid convolution higher algebras in example \ref{DoubleGroupoid2AlgebraOfDeloopingOfFiniteGroup} below. \end{remark} This iterated internalization on the codomain of the groupoid convolution algebra functor has a natural analog on its domain: a 2-groupoid we may present by a [[double groupoid]], namely a [[groupoid object in an (∞,1)-category]] in [[Grpd]] which is 3-[[coskeleton|coskeletal]] as a [[simplicial object]] in [[Grpd]]. \begin{remark} \label{}\hypertarget{}{} Given a [[groupoid object in an (∞,1)-category|groupoid object]] $\mathcal{G}_\bullet$ in the [[(2,1)-topos]] [[Grpd]] hence a [[double groupoid]], applying the groupoid convolution algebra $(2,1)$-functor $C$ to the corresponding [[simplicial object]] $\mathcal{G}_\bullet \in Grpd^{\Delta^{op}}$ yields: \begin{itemize}% \item groupoid convolution algebras $C(\mathcal{G}_0)$ and $C(\mathcal{G}_1)$, \item a $C(\mathcal{G}_1) \otimes_{C(\mathcal{G}_{0,1})} C(\mathcal{G}_1)-C(\mathcal{G}_{0})$-bimodule, assigned to the [[composition]] functor $\partial_1 \colon \mathcal{G}_1 \underset{\mathcal{G}_0}{\times} \mathcal{G}_1 \to \mathcal{G}_1$. \end{itemize} Under the 2-functoriality of $C$, the [[Segal conditions]] satisfied by $\mathcal{G}_\bullet$ make this bimodule exhibi a [[sesquialgebra]] structure over $C(\mathcal{G}_{0,1})$. This sesquialgebra we call the the \textbf{double groupoid convolution 2-algebra} of $\mathcal{G}_\bullet$. (Here we make invariant sense of the [[tensor product]] by evaluating on a [[Reedy model structure|Reedy fibrant]] representative.) \end{remark} \begin{example} \label{DoubleGroupoid2AlgebraOfDeloopingOfFiniteGroup}\hypertarget{DoubleGroupoid2AlgebraOfDeloopingOfFiniteGroup}{} Let $G$ be a [[finite group]]. Write $\mathbf{B}G$ for its [[delooping]] [[groupoid]] (the connected groupoid with $\pi_1 = G$). There are two natural ways to present $\mathbf{B}G$ as a [[double groupoid]]: \begin{enumerate}% \item $\underset{\longrightarrow}{\lim}(\cdots \mathbf{B}G \stackrel{\overset{id}{\to}}{\underset{id}{\to}} \mathbf{B}G) \simeq \mathbf{B}G$; \item $\underset{\longrightarrow}{\lim}(\cdots G \times G \stackrel{\to}{\stackrel{\to}{\to}} G \stackrel{\to}{\to} *) \simeq \mathbf{B}G$. \end{enumerate} Applying the [[groupoid convolution algebra]] functor to the first presentation yields the groupoid convolution algebra $C(\mathbf{B}G)$ equipped with a trivial multiplication bimodule, hence just the group convolution algebra $C(\mathbf{B}G) \simeq C_{conv}(G)$. Applying however the [[groupoid convolution algebra]] functor to the second presentation yields the \emph{commutative} algebra of functions $C(G)$ equipped with the multiplication bimodule which is $C(G \times G)$ regarded as a $(C(G\times G), C(G))$-bimdodule, where the right action is induced by pullback along the group product map $G \times G \to G$. This bimodule is in the image of the functor $Alg \to Alg_b$ that sends algebra homomorphisms to their induced bimodules, by sending $f \colon A \to B$ to $A$ regarded as an $(A,B)$-bimodule with the canonical left action on itself and the right action induced by $f$. Namely this bimdoule correspondonds to the map \begin{displaymath} \Delta \colon C(G) \to C(G \times G) \simeq C(G) \otimes C(G) \end{displaymath} given on $\phi \in C(G)$ and $g_1, g_2 \in G$ by \begin{displaymath} \Delta \phi \colon (g_1, g_2) \mapsto \phi \,. \end{displaymath} In summary this means that (for $G$ a finite group) \begin{enumerate}% \item if we regard $\mathbf{B}G$ as presented as a double groupoid constant on $\mathbf{B}G$, then the corresponding groupoid convolution [[sesquialgebra]] (basis for a [[n-module|3-module]]) is the convolution algebra of $G$; \item if instead we regard $\mathbf{B}G$ as presented as the double groupoid which is degreewise constant as a groupoid, then the corresponding groupoid convolution sesquialgebra is the standard (``dual'') [[Hopf algebra]] structure on the commutative pointwise product algebra of functions on $G$. \end{enumerate} \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{steenrod_operations_on_cotor_groups}{}\subsubsection*{{Steenrod operations on coTor groups}}\label{steenrod_operations_on_cotor_groups} For $\Gamma$ a suitable commutative Hopf algebroid and $N_1, N_2$ two $\Gamma$-[[comodules]], then the co[[Tor]] groups $CoTor_\Gamma(N_1, N_2)$ form a \emph{[[Steenrod algebra]]}. See there for details and citations. For [[MU]] this is the content of the [[Landweber-Novikov theorem]]. \hypertarget{GeneralizedDualSteenrodAlgebra}{}\subsubsection*{{Generalized dual Steenrod algebra}}\label{GeneralizedDualSteenrodAlgebra} For $E$ a suitable [[E-infinity ring]] [[spectrum]], its [[homotopy groups]] $\pi_\bullet(E)$ and [[generalized homology]] $E_\bullet(E)$ form a Hopf algebroid of [[spectra]], the dual $E$-[[Steenrod algebra]]. (These examples have also been called [[brave new Hopf algebroids]].) See at \emph{\href{Steenrod+algebra#HopfAlgebraStructure}{Steenrod algebra -- Hopf algebroid structure}}. The general statement is this: \begin{lemma} \label{SelfHomologyIsModuleOverCohomologyRing}\hypertarget{SelfHomologyIsModuleOverCohomologyRing}{} Let $R$ be an [[E-∞ ring]] and let $A$ an [[E-∞ algebra]] over $R$. The self-[[generalized homology]] $A^R_\bullet(A)$ is naturally a [[module]] over the [[cohomology ring]] $A_\bullet$ via applying the [[homotopy groups]] $\infty$-functor $\pi_\bullet$ to the canonical inclusion \begin{displaymath} A \stackrel{\simeq}{\rightarrow} A \underset{R}{\wedge} R \stackrel{}{\rightarrow} A \underset{R}{\wedge} A \,. \end{displaymath} \end{lemma} \begin{prop} \label{}\hypertarget{}{} Let $R$ be an [[E-∞ ring]] and let $A$ an [[E-∞ algebra]] over $R$. If the the $A_\bullet$-[[module]] $A^R_\bullet(A)$ of lemma \ref{SelfHomologyIsModuleOverCohomologyRing} is a [[flat module]], then \begin{enumerate}% \item $(A_\bullet, A_\bullet(A))$ is a [[Hopf algebroid]] over $R_\bulllet$; \item $A^R_\bullet(X)$ is a left $A^R_\bullet(A)$-module for every $R$-[[∞-module]] $X$. \end{enumerate} \end{prop} This is due to (\hyperlink{BakerLazarev01}{Baker-Lazarev 01}), further discussed in (\hyperlink{BakerJeanneret02}{Baker-Jeanneret 02}) (there expressed in terms of the presentation by [[commutative monoids]] in [[symmetric spectra]]). A review is also in (\hyperlink{Ravenel}{Ravenel, chapter 2, prop. 2.2.8}). \hypertarget{references}{}\subsection*{{References}}\label{references} The generalization of [[commutative Hopf algebroids]] where the base is kept tcommutative while having the total algebra noncommutative, and the image of source and target maps are required to commute mutually is due Maltsiniotis; he also generalized this to [[quasi-Hopf algebra|quasi-Hopf]] version: \begin{itemize}% \item [[Georges Maltsiniotis]], \emph{Groupo\"i{}des quantiques}, Comptes R Rendus Acad. Sci. Paris \textbf{314}, pp. 249-252 (1992) \href{http://people.math.jussieu.fr/~maltsin/ps/GRN-1.PS}{ps} \item G. Maltsiniotis, \emph{Quasi-groupo\"i{}des quantiques} (travail en commun avec A. Brugui\`e{}res), C.R. Acad. Sci. Paris \textbf{319}, pp. 933-936 (1994) \href{http://people.math.jussieu.fr/~maltsin/ps/N-QSBIG.PS}{ps} \end{itemize} A [[Tannaka duality]]-type theorem relating certain subcategory of commutative Hopf algebroids to discrete groupoids is in \begin{itemize}% \item Laiachi EL Kaoutit, \emph{Representative functions on discrete groupoids and duality with Hopf algebroids}, \href{http://arxiv.org/abs/1311.3109}{arxiv/1311.3109} \end{itemize} For the relation to [[groupoid convolution algebras]] see also at \emph{\href{category%20algebra#ReferencesConvolutionHopfAlgebroids}{groupoid convolution algebra -- References -- Convolution Hopf algebroids}}. \begin{itemize}% \item [[Mark Hovey]], \emph{Morita theory for Hopf algebroids and presheaves of groupoids} (\href{http://arxiv.org/abs/math/0105137}{arXiv:math/0105137}) \end{itemize} category: algebra [[!redirects Hopf algebroids over a commutative base]] \end{document}