\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Hopf construction} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{HomotopyFiber}{Homotopy fiber}\dotfill \pageref*{HomotopyFiber} \linebreak \noindent\hyperlink{relation_to_hopf_invariant}{Relation to Hopf invariant}\dotfill \pageref*{relation_to_hopf_invariant} \linebreak \noindent\hyperlink{RealizationAsAQuasiFibration}{Realization as a quasi-fibration}\dotfill \pageref*{RealizationAsAQuasiFibration} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{HopfFibrations}{Hopf fibrations}\dotfill \pageref*{HopfFibrations} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Let $X$ be an [[H-space]]. The \emph{Hopf construction} (\hyperlink{Hopf35}{Hopf 35}) on $X$ is a [[fibration]] \begin{displaymath} X \hookrightarrow X\ast X \to \Sigma X \end{displaymath} whose [[fiber]] is $X$, whose base space is the [[suspension]] of $X$, and whose total space is the [[join of topological spaces|join]] of $X$ with itself. (\hyperlink{Stasheff70}{Stasheff 70, chapter 1}). Specialized to $X$ the [[sphere]] of [[dimension]] [[0-sphere|0]], [[1-sphere|1]], [[3-sphere|3]], or [[7-sphere|7]], the Hopf construction yields the \emph{\hyperlink{HopfFibrations}{Hopf fibrations}}. (And by the [[Hopf invariant one theorem]] these are the only dimensions for in which spheres are H-spaces.) \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \begin{defn} \label{SuspensionJoin}\hypertarget{SuspensionJoin}{} Write $I \coloneqq [0,1]$ for the unit interval, regarded as a [[topological space]]. Let $X,Y$ be [[topological spaces]]. \begin{enumerate}% \item The [[suspension]] $\Sigma X$ is the [[quotient space]] \begin{displaymath} \Sigma X \coloneqq (X \times I)_{/\sim} \end{displaymath} by the [[equivalence relation]] given by \begin{displaymath} (x_1,0) \sim (x_2,0) \;\,,\;\; (x_1, 1) \sim (x_2, 1) \;\;\; \forall x_1,x_2 \in X \end{displaymath} \item The [[join of topological spaces|join]] $X \ast Y$ is the [[quotient space]] \begin{displaymath} X \ast Y \coloneqq (X \times I \times Y)_{/\sim} \end{displaymath} by the [[equivalence relation]] \begin{displaymath} (x, 0, y_1) \simeq (x,0,y_2) \;\;,\;\; (x_1,1,y) \sim (x_2, 1, y) \,. \end{displaymath} \end{enumerate} \end{defn} \begin{defn} \label{HopfConstruction}\hypertarget{HopfConstruction}{} Given a [[continuous function]] of the form \begin{displaymath} f \colon X \times Y \longrightarrow Z \end{displaymath} its \emph{Hopf construction} is the continuous function \begin{displaymath} H_f \colon X \ast Y \longrightarrow \Sigma Z \end{displaymath} out of the [[join of topological spaces|join]] into the [[suspension]], given in the coordinates of def. \ref{SuspensionJoin} by \begin{displaymath} H_f \colon (x,t,y) \mapsto (f(x,y), t) \,. \end{displaymath} \end{defn} \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{HomotopyFiber}{}\subsubsection*{{Homotopy fiber}}\label{HomotopyFiber} If $X$ is an ``grouplike H-space'', in that it is a topological [[magma]] such that left multiplication acts by [[weak homotopy equivalences]], then the [[homotopy fiber]] of the Hopf construction $X \ast X \to \Sigma X$ over any point is [[weak homotopy equivalence|weakly homotopy equivalent]] to $X$ (\href{https://nforum.ncatlab.org/discussion/3391/hopf-fibration/?Focus=76088#Comment_76088}{here}). Beware that it may not generally be true that the ordinary [[fibers]] of the Hopf construction are [[weak homotopy equivalence|weakly homotopy equivalent]] to the [[homotopy fibers]], see also the discussion of [[quasifibrations]] \hyperlink{RealizationAsAQuasiFibration}{below}. But in the classical examples it Happens to be the case, see at [[Hopf fibration]]. \hypertarget{relation_to_hopf_invariant}{}\subsubsection*{{Relation to Hopf invariant}}\label{relation_to_hopf_invariant} Consider $X = S^{n-1}$ a [[sphere]] \begin{prop} \label{HopfInvariantFromProductOfDegrees}\hypertarget{HopfInvariantFromProductOfDegrees}{} Given a [[continuous function]] \begin{displaymath} f \colon S^{n-1}\times S^{n-1} \longrightarrow S^{n-1} \end{displaymath} the [[degree of a continuous function|degrees]] \begin{displaymath} \alpha \coloneqq deg(f(x,-)) \;\;\; \beta \coloneqq deg(f(-,x)) \end{displaymath} are independent of the choice of $x \in S^{n-1}$. The [[Hopf invariant]] $h$ of the Hopf construction $H_f$ of $f$, def. \ref{HopfConstruction}, is the product of these two: \begin{displaymath} h(H_f) = \alpha \beta \,. \end{displaymath} \end{prop} (\hyperlink{MosherTangora}{Mosher-Tangora, exercises to section 4, page 38}) \hypertarget{RealizationAsAQuasiFibration}{}\subsubsection*{{Realization as a quasi-fibration}}\label{RealizationAsAQuasiFibration} Beware that \hyperlink{Stasheff70}{Stasheff 70, theorem 1.2} claims that Sugawara claimed that the Hopf construction for any [[CW-complex|CW]] H-space is necessarily a [[quasifibration]]. But it seems (\href{https://nforum.ncatlab.org/discussion/3391/hopf-fibration/?Focus=75986#Comment_75986}{here}) that Sugawara never actually claimed this and also (\href{https://nforum.ncatlab.org/discussion/3391/hopf-fibration/?Focus=75985#Comment_75985}{here}) that it is not actually the case. A different but homotopy-equivalent realization of the Hopf construction, which over grouplike H-spaces is guaranteed to be a [[quasifibration]], is maybe given in \hyperlink{DoldLashof59}{Dold-Lashof 59}, see also \hyperlink{Stasheff70}{Stasheff 70, theorem 1.4}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{HopfFibrations}{}\subsubsection*{{Hopf fibrations}}\label{HopfFibrations} When $X$ is a [[sphere]] that is an $H$-space, namely, one of the [[groups]] $S^0 = \mathbb{Z}/2$ the [[group of order 2]], $S^1 = U(1)$ the [[circle group]], the [[3-sphere]] [[special unitary group]] $S^3 = SU(2)$; or the [[7-sphere]] $S^7$ with its [[Moufang loop]] structure, then the Hopf construction produces the four \emph{[[Hopf fibrations]]}: \begin{enumerate}% \item $S^0 \hookrightarrow S^1 \to S^1$ -- [[real Hopf fibration]] \item $S^1 \hookrightarrow S^3 \to S^2$ -- [[complex Hopf fibration]] \item $S^3 \hookrightarrow S^7 \to S^4$ -- [[quaternionic Hopf fibration]] \item $S^7 \hookrightarrow S^{15} \to S^8$ -- [[octonionic Hopf fibration]] \end{enumerate} In detail, let $A \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}\}$ be one of the real [[normed division algebras]] and write \begin{displaymath} n \coloneqq dim_{\mathbb{R}}(A) \in \{1,2,4,8\} \end{displaymath} for its [[dimension]] as a real vector space. Then the $S^{n-1}$-sphere may be identified with the subspace of unit norm elements in $A$: \begin{displaymath} S^{n-1} \simeq \left\{ x \in A \,; {\vert x\vert}^2 = 1 \right\} \,. \end{displaymath} Consider then the pairing map \begin{displaymath} f \colon S^{n-1}\times S^{n-1} \longrightarrow S^{n-1} \end{displaymath} which is the restriction to these unit norm elements of the product in $A$: \begin{displaymath} f \colon (x,y) \mapsto x \cdot y \end{displaymath} This is well defined by the very property that for [[normed division algebras]] the norm is multiplicative. Accordingly, the [[join of topological spaces|join]] of two such spheres is naturally parameterized as follows \begin{displaymath} S^{n-1}\ast S^{n-1} = (S^{n-1}\times I \times S^{n-1})_{/\sim} \simeq \left\{ (x,t,y) \,, {\vert x \vert}^2 = 2t \,,\; {\vert y\vert}^2 = 2 - 2t \right\} \end{displaymath} which makes manifest that \begin{displaymath} S^{n-1} \ast S^{n-1} \simeq S^{2n-1} \end{displaymath} Similarly, the [[suspension]] is parameterized by \begin{displaymath} \Sigma S^{n-1} = (S^{n-1}\times I)_{/\sim} \simeq \left\{ (z,t) \,,\; {\vert z \vert}^2 + (1 - 2t)^2 = 1 \right\} \end{displaymath} where we take $I = [0,1]$ and $t \in I$. This makes manifest that \begin{displaymath} \Sigma S^{n-1} \simeq S^n \,. \end{displaymath} Moreover, in this parameterization the Hopf construction, def. \ref{HopfConstruction}, which is given by \begin{displaymath} (x,y) \mapsto x \cdot \overline{y} \end{displaymath} manifestly gives the Hopf fibration map. Notice that it is again the multiplicativity of the norm in division algebras which makes this work: if ${\vert x \vert}^2 = 2t$ and ${\vert y\vert}^2 = 2 - 2t$ then it follows that \begin{displaymath} \begin{aligned} {\vert x \cdot \overline{y}\vert}^2 + (1- 2t)^2 & = {\vert x \vert}^2 {\vert y \vert}^2 + (1-2t)^2 \\ & = 2t (2-2t) + (1 - 2t)^2 \\ & = 1 \end{aligned} \,, \end{displaymath} hence that indeed we have a well-defined map like so: \begin{displaymath} \itexarray{ S^7 & \longrightarrow & S^4 \\ \left\{ (x,t,y) \,, {\vert x \vert}^2 = 2t \,,\; {\vert y\vert}^2 = 2 - 2t \right\} &\stackrel{{(x,y) \mapsto z \coloneqq x \cdot \overline{y}}\atop{t \mapsto t}}{\longrightarrow}& \left\{ (z,t) \,,\; {\vert z \vert}^2 + (1 - 2t)^2 = 1 \right\} } \,. \end{displaymath} \hypertarget{references}{}\subsection*{{References}}\label{references} The original sources are \begin{itemize}% \item [[Heinz Hopf]], \emph{\"U{}ber die Abbildungen von Sph\"a{}ren auf Sph\"a{}ren niedrigerer Dimension}, Fund. Math. 25: 427--440 (1935) (\href{https://eudml.org/doc/212801}{Euclid}) \item [[George Whitehead]], \emph{On the homotopy groups of spheres and rotation groups}, Annals of Mathematics. Second Series 43 (4): 634--640, (1942) (\href{http://www.jstor.org/stable/1968956}{JSTOR}) \item [[Albrecht Dold]], [[Richard Lashof]], \emph{Principal quasifibrations and fibre homotopy equivalence of bundles}, Illinois J. Math. Volume 3, Issue 2 (1959), 285-305 (\href{https://projecteuclid.org/euclid.ijm/1255455128}{euclid:1255455128}) \end{itemize} Review inclides \begin{itemize}% \item [[Jim Stasheff]], chapter 1 in \emph{H-Spaces from a Homotopy point of view}, Lecture Notes in Mathematics Volume 161 1970 \end{itemize} Textbook accounts include \begin{itemize}% \item [[Robert Mosher]], [[Martin Tangora]], p. 38 of \emph{Cohomology Operations and Application in Homotopy Theory}, Harper and Row (1968) (\href{http://math.jhu.edu/~anakade1/notes/Dec%202014/Mosher%20and%20Tangora%20Notes/mosher-tangora.pdf}{pdf}) \item Marcelo Aguilar, [[Samuel Gitler]], Carlos Prieto, section 10.6 of \emph{Algebraic topology from a homotopical viewpoint}, Springer (2002) (\href{http://tocs.ulb.tu-darmstadt.de/106999419.pdf}{toc pdf}) \end{itemize} See also \begin{itemize}% \item Guillermo Moreno, \emph{Hopf construction map in higher dimensions} (\href{https://arxiv.org/abs/math/0404172}{arXiv:math/0404172}) \item Feza Guersey, Chia-Hsiung Tze, (4b.2) in \emph{On the role of Division, Jordan and Related algebras in Particle Physics} \end{itemize} Discussion of the situation in [[parameterized homotopy theory]] includes \begin{itemize}% \item A. L. Cook, M.C. Crabb, \emph{Fiberwise Hopf structures on sphere bundles}, J. London Math. Soc. (2) 48 (1993) 365-384 (\href{http://www.maths.ed.ac.uk/~aar/papers/crabbcook.pdf}{pdf}) \item Kouyemon Iriye, \emph{Equivariant Hopf structures on a sphere}, J. Math. Kyoto Univ. Volume 35, Number 3 (1995), 403-412 (\href{http://projecteuclid.org/euclid.kjm/1250518704}{Euclid}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Hopf_construction}{Hopf construction}} \end{itemize} [[!redirects Hopf constructions]] [[!redirects Hopf map]] [[!redirects Hopf maps]] \end{document}