\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Hopf fibration} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{manifolds_and_cobordisms}{}\paragraph*{{Manifolds and cobordisms}}\label{manifolds_and_cobordisms} [[!include manifolds and cobordisms - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{DefinitionFor3Sphere}{On the 3-sphere}\dotfill \pageref*{DefinitionFor3Sphere} \linebreak \noindent\hyperlink{HomotopyTheoreticCharacterization}{Homotopy-theoretic characterization}\dotfill \pageref*{HomotopyTheoreticCharacterization} \linebreak \noindent\hyperlink{realization_via_the_complex_numbers}{Realization via the complex numbers}\dotfill \pageref*{realization_via_the_complex_numbers} \linebreak \noindent\hyperlink{RealizationViaQuaternions}{Realization via quaternions}\dotfill \pageref*{RealizationViaQuaternions} \linebreak \noindent\hyperlink{realization_via_the_hopf_construction}{Realization via the Hopf construction}\dotfill \pageref*{realization_via_the_hopf_construction} \linebreak \noindent\hyperlink{spin3actionequivariance}{[[Spin(3)]]-[[action|equivariance]]}\dotfill \pageref*{spin3actionequivariance} \linebreak \noindent\hyperlink{OnAllFourSpheres}{On the 1-sphere, 3-sphere, 7-sphere and 15-sphere}\dotfill \pageref*{OnAllFourSpheres} \linebreak \noindent\hyperlink{via_norms_and_projections}{Via norms and projections}\dotfill \pageref*{via_norms_and_projections} \linebreak \noindent\hyperlink{via_the_hopf_construction}{Via the Hopf construction}\dotfill \pageref*{via_the_hopf_construction} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToStableHomotopyGroupsOfSpheres}{Relation to stable homotopy groups of spheres}\dotfill \pageref*{RelationToStableHomotopyGroupsOfSpheres} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{magnetic_monopoles}{Magnetic monopoles}\dotfill \pageref*{magnetic_monopoles} \linebreak \noindent\hyperlink{ktheory}{K-theory}\dotfill \pageref*{ktheory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{complex Hopf fibration} (named after [[Heinz Hopf]]) is a canonical nontrivial [[circle principal bundle]] over the [[2-sphere]] whose total space is the [[3-sphere]]. \begin{displaymath} S^1 \hookrightarrow S^3 \to S^2 \,. \end{displaymath} Its canonically [[associated bundle|associated]] [[complex line bundle]] is the [[basic line bundle on the 2-sphere]]. This we discuss below in \begin{itemize}% \item \emph{\hyperlink{DefinitionFor3Sphere}{On the 3-sphere}} \end{itemize} More generally, there are four Hopf fibrations, on the 1-sphere, the 3-sphere, the 7-sphere and the 15-sphere, respectively. This we discuss in \begin{itemize}% \item \emph{\hyperlink{OnAllFourSpheres}{On the 1-sphere, 3-sphere, 7-sphere and 15-sphere}}. \end{itemize} \hypertarget{DefinitionFor3Sphere}{}\subsection*{{On the 3-sphere}}\label{DefinitionFor3Sphere} \hypertarget{HomotopyTheoreticCharacterization}{}\subsubsection*{{Homotopy-theoretic characterization}}\label{HomotopyTheoreticCharacterization} The [[Eilenberg-MacLane space]] $K(\mathbb{Z},2) \simeq B S^1$ is the [[classifying space]] for [[circle group]] [[principal bundles]]. By its very nature, it has a single nontrivial [[homotopy group]], the second, and this is isomorphic to the group of [[integers]] \begin{displaymath} \pi_2(K(\mathbb{Z},2)) \simeq \mathbb{Z} \,. \end{displaymath} This means that there is, up to [[homotopy]], a canonical (up to sign), continuous map from the 2-sphere \begin{displaymath} \phi : S^2 \to K(\mathbb{Z},2) \,, \end{displaymath} such that $[\phi] \in \pi_2(K(\mathbb{Z},2)) = \pm 1 \in \mathbb{Z}$. As any map into $K(\mathbb{Z},2)$ this classifies a [[circle group]] [[principal bundle]] over its [[domain]]. This is the Hopf fibration, fitting into the long [[fiber sequence]] \begin{displaymath} \itexarray{ S^1 &\hookrightarrow& S^3 \\ && \downarrow \\ && S^2 &\stackrel{\phi}{\to}& B S^1 \simeq K(\mathbb{Z},2) } \,. \end{displaymath} In other words, the Hopf fibration is the $U(1)$-bundle with unit first [[Chern class]] on $S^2$. \hypertarget{realization_via_the_complex_numbers}{}\subsubsection*{{Realization via the complex numbers}}\label{realization_via_the_complex_numbers} An explicit [[topological space]] presenting the Hopf fibration may be obtained as follows. Identify \begin{displaymath} S^3 \simeq \{(z_0, z_1) \in \mathbb{C}\times \mathbb{C} \,|\, {|z_0|}^2 + {|z_1|}^2 = 1\} \end{displaymath} and \begin{displaymath} S^2 \simeq \mathbb{C P}^1 \simeq \mathbb{C} \sqcup \{\infty\} \end{displaymath} Then the [[continuous function]] $S^3 \to S^2$ defined by \begin{displaymath} (z_0, z_1) \mapsto \frac{z_0}{z_1} \end{displaymath} gives the Hopf fibration. (Thus, the Hopf fibration is a circle bundle naturally associated with the canonical [[line bundle]].) Alternatively, if we use \begin{displaymath} S^2 \simeq \{(z, x) \in \mathbb{C} \times \mathbb{R} \,|\, {|z|}^2 + x^2 = 1\} \,. \end{displaymath} and identify this presentation of the 2-sphere with the complex projective line via [[stereographic projection]], the Hopf fibration is identified with the map $S^3 \to S^2$ given by sending \begin{displaymath} (z_0, z_1) \mapsto (2 z_0 z_1^* , {|z_0|}^2 - {|z_1|}^2). \end{displaymath} \hypertarget{RealizationViaQuaternions}{}\subsubsection*{{Realization via quaternions}}\label{RealizationViaQuaternions} Alternatively, we may regard $S^3 \simeq S(\mathbb{H})$ as the [[unit sphere]] in the [[quaternions]] and $S^2 \simeq S\left( \mathbb{H}_{\mathrm{im}}\right)$ as the unit sphere in the [[imaginary part|imaginary]] [[quaternions]]. Under this identification, the complex Hopf fibration is equivalently represented by \begin{displaymath} \itexarray{ S(\mathbb{H}) &\longrightarrow& S\left( \mathbb{H}_{\mathrm{im}}\right) \\ q &\mapsto& q \cdot \mathbf{i} \cdot \overline{q} } \end{displaymath} where $\mathbf{i} \in S\left( \mathbb{H}_{\mathrm{im}}\right)$ is any unit imaginary quaternion. \hypertarget{realization_via_the_hopf_construction}{}\subsubsection*{{Realization via the Hopf construction}}\label{realization_via_the_hopf_construction} Regard $S^1 = U(1)$ as equipped with its [[circle group]] structure. This makes $S^1$ in particular an [[H-space]]. The Hopf fibration $S^1 \to S^3 \to S^2$ is the [[Hopf construction]] applied to this H-space. \hypertarget{spin3actionequivariance}{}\subsubsection*{{[[Spin(3)]]-[[action|equivariance]]}}\label{spin3actionequivariance} Consider \begin{enumerate}% \item the [[Spin(3)]]-[[action]] on the [[2-sphere]] $S^2$ which is induced by the defining action on $\mathbb{R}^3$ under the identification $S^2 \simeq S(\mathbb{R}^3)$; \item the [[Spin(3)]]-action on the [[3-sphere]] $S^3$ which is induced under the exceptional [[isomorphism]] $Spin(3) \simeq Sp(1) = U(1,\mathbb{H})$ by the canonical left action of $U(1,\mathbb{H})$ on $\mathbb{H}$ via $S^3 \simeq S(\mathbb{H})$. \end{enumerate} Then the complex Hopf fibration $S^3 \overset{h_{\mathbb{C}}}{\longrightarrow} S^2$ is [[equivariant]] with respect to these [[actions]]. A way to make the $Spin(3)$-equivariance of the complex Hopf fibration fully explicit is to observe that the it is equivalently the following map of [[coset spaces]]: \begin{displaymath} \itexarray{ S^1 &\overset{fib(h_{\mathbb{C}})}{\longrightarrow}& S^{3} &\overset{h_{\mathbb{C}}}{\longrightarrow}& S^2 \\ = && = && = \\ \frac{Spin(2)}{Spin(1)} &\longrightarrow& \frac{Spin(3)}{Spin(1)} &\longrightarrow& \frac{Spin(3)}{Spin(2)} } \end{displaymath} \hypertarget{OnAllFourSpheres}{}\subsection*{{On the 1-sphere, 3-sphere, 7-sphere and 15-sphere}}\label{OnAllFourSpheres} \hypertarget{via_norms_and_projections}{}\subsubsection*{{Via norms and projections}}\label{via_norms_and_projections} For each of the [[normed division algebra|normed division algebras]] over $\mathbb{R}$, the [[real numbers]], [[complex numbers]], [[quaternions]], [[octonions]] \begin{displaymath} A = \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}, \end{displaymath} there is a corresponding Hopf fibration of [[Hopf invariant one]]. The total space of the fibration is the space of pairs $(\alpha, \beta) \in A^2$ of unit norm: ${|\alpha|}^2 + {|\beta|}^2 = 1$. This gives [[spheres]] of dimension 1, [[3-sphere|3]], [[7-sphere|7]], and 15 respectively. The base space of the fibration is [[projective space|projective]] 1-space $\mathbb{P}^1(A)$, giving spheres of dimension 1, 2, 4, and 8, respectively. In each case, the Hopf fibration is the map \begin{displaymath} S^{2^n - 1} \to S^{2^{n-1}} \end{displaymath} ($n = 1, 2, 3, 4$) which sends the pair $(\alpha, \beta)$ to $\alpha/\beta$. \hypertarget{via_the_hopf_construction}{}\subsubsection*{{Via the Hopf construction}}\label{via_the_hopf_construction} When $X$ is a [[sphere]] that is an $H$-space, namely, one of the [[groups]] $S^0 = 1$ the [[trivial group]], $S^1 = \mathbb{Z}/2$ the [[group of order 2]], the [[3-sphere]] [[special unitary group]] $S^3 = SU(2)$; or the [[7-sphere]] $S^7$ with its [[Moufang loop]] structure, then the Hopf construction produces the above four Hopf fibrations: \begin{enumerate}% \item $S^0 \hookrightarrow S^1 \to S^1$ -- [[real Hopf fibration]] \item $S^1 \hookrightarrow S^3 \to S^2$ -- [[complex Hopf fibration]] \item $S^3 \hookrightarrow S^7 \to S^4$ -- [[quaternionic Hopf fibration]] \item $S^7 \hookrightarrow S^{15} \to S^8$ -- [[octonionic Hopf fibration]] \end{enumerate} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToStableHomotopyGroupsOfSpheres}{}\subsubsection*{{Relation to stable homotopy groups of spheres}}\label{RelationToStableHomotopyGroupsOfSpheres} Let $H_{\mathbb{C}} \in \pi_3(S^2)$, $H_{\mathbb{H}} \in \pi_7(S^4)$ $H_{\mathbb{O}} \in \pi_{15}(S^8)$ be the [[homotopy class]] of the [[complex Hopf fibration]], the [[quaternionic Hopf fibration]] and the [[octonionic Hopf fibration]], respectively. Then their [[suspensions]] are the generators of the corresponding [[stable homotopy groups of spheres]]: \begin{displaymath} \begin{aligned} \Sigma H_{\mathbb{C}} & = \pm 1 \in \mathbb{Z}_2 \simeq \pi_1^{st} \\ \Sigma H_{\mathbb{H}} & = \pm 1 \in \mathbb{Z}_{24} \simeq \pi_3^{st} \\ \Sigma H_{\mathbb{O}} & = \pm 1 \in \mathbb{Z}_{240} \simeq \pi_7^{st} \end{aligned} \end{displaymath} see \href{https://mathoverflow.net/a/224082/381}{this MO comment} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \hypertarget{magnetic_monopoles}{}\subsubsection*{{Magnetic monopoles}}\label{magnetic_monopoles} When [[line bundles]] are regarded as models for the topological structure underlying the [[electromagnetic field]] the Hopf fibration is often called ``the [[magnetic monopole]]''. We may think of the $S^2$ homotopically as being the 3-dimensional [[Cartesian space]] with origin removed $\mathbb{R}^3 - \{0\}$ and think of this as being 3-dimensional physical space with a unit point [[magnetic charge]] at the origin removed. The corresponding [[electromagnetic field]] away from the origin is given by a [[connection on a bundle|connection]] on the corresponding Hopf fibration bundle. \hypertarget{ktheory}{}\subsubsection*{{K-theory}}\label{ktheory} In complex [[K-theory]], the Hopf fibration represents a class $H$ which generates the [[cohomology ring]] $K_U(S^2)$, and satisfying the relation $H^2 = 2 \cdot H - 1$, or $(H-1)^2 = 0$. (So in particular $H$ has an [[inverse]] $H^{-1} = 2- H$, see at [[Bott generator]].) A succinct formulation of [[Bott periodicity]] for [[complex K-theory]] is that for a space $X$ whose [[homotopy type]] is that of a [[CW-complex]], we have \begin{displaymath} K(S^2 \times X) \cong K(S^2) \otimes K(X) \end{displaymath} (It would be interesting to see whether this can be proved by internalizing the (classically easy) calculation for $K(S^2)$ to the topos of sheaves over $X$.) The Hopf fibrations over other [[normed division algebras]] also figure in the more complicated case of [[real K-theory]] $K_O$: they can be used to provide generators for the non-zero [[homotopy groups]] $\pi_n(B O)$ for the [[classifying space]] of the [[stable orthogonal group]], which are periodic of period 8 (not coincidentally, 8 is the dimension of the largest normed division algebra $\mathbb{O}$). To be followed up on. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Hopf construction]] \item [[Hopf invariant one]] \item [[quaternionic Hopf fibration]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} Reviews include \begin{itemize}% \item \emph{\href{https://chiasme.wordpress.com/2014/01/04/third-homotopy-group-of-the-sphere-and-hopf-fibration/}{Third homotopy group of the sphere and Hopf fibration}} \end{itemize} For more discussion in [[homotopy type theory]] see also at \begin{itemize}% \item \href{https://ncatlab.org/homotopytypetheory/show/HomePage}{HoTT Wiki}, \emph{[[homotopytypetheory:Hopf fibration]]} \end{itemize} Discussion of [[supersymmetry|supersymmetric]] Hopf fibrations: \begin{itemize}% \item [[A. P. Balachandran]], G. Marmo, B.-S. Skagerstam and A. Stern, section 9.3 of \emph{Gauge Symmetries and Fibre Bundles}, Lect. Notes in Physics 188, Springer-Verlag, Berlin, 1983 (\href{https://arxiv.org/abs/1702.08910}{arXiv:1702.08910}) \item Simon Davis, section 3 of \emph{Supersymmetry and the Hopf fibration} (\href{https://doi.org/10.4995/agt.2012.1623}{doi:10.4995/agt.2012.1623}) \end{itemize} [[!redirects Hopf fibrations]] [[!redirects complex Hopf fibration]] \end{document}