\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Hopf invariant} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{generic_values}{Generic values}\dotfill \pageref*{generic_values} \linebreak \noindent\hyperlink{hopf_invariant_one}{Hopf invariant one}\dotfill \pageref*{hopf_invariant_one} \linebreak \noindent\hyperlink{via_sullivan_models}{Via Sullivan models}\dotfill \pageref*{via_sullivan_models} \linebreak \noindent\hyperlink{whitehead_integral_formula}{Whitehead integral formula}\dotfill \pageref*{whitehead_integral_formula} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ReferencesWhiteheadIntegralFormula}{Whitehead's integral formula}\dotfill \pageref*{ReferencesWhiteheadIntegralFormula} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $n \in \mathbb{N}$ with $n \gt 1$, consider [[continuous functions]] between [[spheres]] of the form \begin{displaymath} \phi \;\colon\; S^{2n-1} \longrightarrow S^n \,. \end{displaymath} The [[homotopy cofiber]] of $\phi$ \begin{displaymath} cofib(\phi) \simeq S^n \underset{S^{2n-1}}{\cup} D^{2n} \end{displaymath} has [[ordinary cohomology]] \begin{displaymath} H^k(cofib(\phi), \mathbb{Z}) \simeq \left\{ \itexarray{ \mathbb{Z} & for\; k = n, 2n; \\ 0 & otherwise } \right. \,. \end{displaymath} Hence for $\alpha, \beta$ generators of the cohomology groups in degree $n$ and $2n$ (unique up to choice of sign), respectively, there exists an [[integer]] $h(\phi)$ which expresses the [[cup product]] square of $\alpha$ as a multiple of $\beta$: \begin{displaymath} \alpha \cup \alpha = h(\phi) \cdot \beta \,. \end{displaymath} This integer $h(\phi) \in \mathbb{Z}$ is called the \emph{Hopf invariant} of $\phi$ (e.g. \hyperlink{MosherTangora86}{Mosher-Tangora 86, p. 33}). It depends on the choices made only up to sign. In particular it has a well-defined image $[h(\phi)] \in \mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$, and as such it is the [[Steenrod square]] \begin{displaymath} [h(\phi)] \cdot (-) \;\colon\; \mathbb{F}_2 \simeq H^n(cofib(\phi), \mathbb{F}_2) \stackrel{Sq^n}{\longrightarrow} H^{2n}(cofib(\phi), \mathbb{F}_2) \simeq \mathbb{F}_2 \,. \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{generic_values}{}\subsubsection*{{Generic values}}\label{generic_values} For $n$ odd, the Hopf invariant necessarily vanishes. For $n$ even however, then there is a homomorphism \begin{displaymath} \pi_{2n-1}(S^n) \longrightarrow \mathbb{Z} \end{displaymath} whose [[image]] contains at least the even integers. \hypertarget{hopf_invariant_one}{}\subsubsection*{{Hopf invariant one}}\label{hopf_invariant_one} Hence a famous open question in the 1950s was for which maps $\phi$ one has Hopf invariant one, $h(\phi) = 1$. The \emph{[[Hopf invariant one theorem]]} (\href{Hopf+invariant+one#Adams60}{Adams60}) states that the only maps of Hopf invariant one, $h(\phi) = 1$, are the [[Hopf constructions]] on the four real [[normed division algebras]]: \begin{itemize}% \item the [[real Hopf fibration]]; \item the [[complex Hopf fibration]]; \item the [[quaternionic Hopf fibration]]; \item the [[octonionic Hopf fibration]]. \end{itemize} \hypertarget{via_sullivan_models}{}\subsubsection*{{Via Sullivan models}}\label{via_sullivan_models} \begin{prop} \label{RecognitionFromSullivanModels}\hypertarget{RecognitionFromSullivanModels}{} By standard results in [[rational homotopy theory]], every [[continuous function]] \begin{displaymath} S^{4k-1} \overset{\phi}{\longrightarrow} S^{2k} \end{displaymath} corresponds to a unique [[dgc-algebra]] [[homomorphism]] \begin{displaymath} CE \big( \mathfrak{l}S^{4k-1} \big) \overset{ CE(\mathfrak{l}\phi) }{\longleftarrow} CE \big( \mathfrak{l}S^{2k} \big) \end{displaymath} between [[Sullivan models]] [[rational n-sphere|of n-spheres]]. The unique free [[coefficient]] of this homomorphism $CE(\mathfrak{l}\phi)$ is the Hopf invariant $HI(\phi)$ of $\phi$: $\backslash$begin\{center\} $\backslash$begin\{imagefromfile\} ``file\_name'': ``HopfInvariantFromSullivanModels.jpg'', ``width'': 530 $\backslash$end\{imagefromfile\} $\backslash$end\{center\} \end{prop} \hypertarget{whitehead_integral_formula}{}\subsubsection*{{Whitehead integral formula}}\label{whitehead_integral_formula} See at \emph{[[Whitehead integral formula]]} and see the references \hyperlink{ReferencesWhiteheadIntegralFormula}{below} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Whitehead integral formula]] \begin{itemize}% \item [[functional cup product]] \item [[Hopf-Wess-Zumino term]] \end{itemize} \item [[Hopf degree theorem]] \item [[EHP spectral sequence]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item [[Robert Mosher]], [[Martin Tangora]], p. 33 of \emph{Cohomology operations and applications in homotopy theory}, Harper \& Row 1986 (\href{https://www.maths.ed.ac.uk/~v1ranick/papers/moshtang.pdf}{pdf}) \item [[Dale Husemöller]], chapter 15 of \emph{Fibre Bundles}, Graduate Texts in Mathematics 20, Springer New York (1966) \item [[John Michael Boardman]], B. Steer, \emph{On Hopf Invariants} (\href{http://www.maths.ed.ac.uk/~aar/papers/boarstee.pdf}{pdf}) \item Michael Crabb, [[Andrew Ranicki]], \emph{The geometric Hopf invariant} (\href{http://www.maths.ed.ac.uk/~aar/slides/hopfbeam.pdf}{pdf}) \end{itemize} See also: \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Hopf_invariant}{Hopf invariant}} \end{itemize} \hypertarget{ReferencesWhiteheadIntegralFormula}{}\subsubsection*{{Whitehead's integral formula}}\label{ReferencesWhiteheadIntegralFormula} Discussion via [[differential forms]]/[[rational homotopy theory]] (see also at [[functional cup product]]): \begin{itemize}% \item [[J. H. C. Whitehead]], \emph{An expression of Hopf's invariant as an integral}, Proc. Nat. Acad. Sci. USA 33 (1947), 117–123 (\href{https://www.jstor.org/stable/87688}{jstor:87688}) \item [[Hassler Whitney]], Section 31 in \emph{Geometric Integration Theory}, 1957 (\href{https://press.princeton.edu/titles/3151.html}{pup:3151}) \item [[André Haefliger]], p. 3 of \emph{Whitehead products and differential forms}, In: P.A. Schweitzer (ed.), \emph{Differential Topology, Foliations and Gelfand-Fuks Cohomology}, Lecture Notes in Mathematics, vol 652. Springer 1978 (\href{https://doi.org/10.1007/BFb0063500}{doi:10.1007/BFb0063500}) \item [[Raoul Bott]], [[Loring Tu]], Prop. 17.22 in \emph{[[Differential Forms in Algebraic Topology]]}, Graduate Texts in Mathematics 82, Springer 1982 (\href{https://doi.org/10.1007/BFb0063500}{doi:10.1007/BFb0063500}) \item Lee Rudolph, \emph{Whitehead's Integral Formula, Isolated Critical Points, and the Enhancement of the Milnor Number}, Pure and Applied Mathematics Quarterly Volume 6, Number 2, 2010 (\href{https://arxiv.org/abs/0912.4974}{arXiv:0912.4974}) \item [[Phillip Griffiths]], [[John Morgan]], Section 14.5 of \emph{Rational Homotopy Theory and Differential Forms}, Progress in Mathematics Volume 16, Birkhauser (1981, 2013) (\href{https://doi.org/10.1007/978-1-4614-8468-4}{doi:10.1007/978-1-4614-8468-4}) \item [[Dev Sinha]], [[Ben Walter]], \emph{Lie coalgebras and rational homotopy theory II: Hopf invariants}, Trans. Amer. Math. Soc. 365 (2013), 861-883 (\href{https://arxiv.org/abs/0809.5084}{arXiv:0809.5084}, \href{https://doi.org/10.1090/S0002-9947-2012-05654-6}{doi:10.1090/S0002-9947-2012-05654-6}) \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Twisted Cohomotopy implies M5 WZ term level quantization]]}, 2019 (\href{https://arxiv.org/abs/1906.07417}{arXiv:1906.07417}) \end{itemize} [[!redirects Hopf invariants]] \end{document}