\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Hopf monad} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{monoidal_monads}{Monoidal monads\ldots{}}\dotfill \pageref*{monoidal_monads} \linebreak \noindent\hyperlink{opmonoidal_monads_with_invertible_fusion}{Opmonoidal monads with invertible fusion}\dotfill \pageref*{opmonoidal_monads_with_invertible_fusion} \linebreak \noindent\hyperlink{distributing_monad_and_comonad_structures}{Distributing monad and comonad structures}\dotfill \pageref*{distributing_monad_and_comonad_structures} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} One can consider various compatibilities between a ([[comonad|co]])[[monad]] on a [[monoidal category]] and the underlying monoidal product; they are variants of the idea of a [[distributive law]]. Similarly, one can look at a compatibility between an action of a monoidal category and a (co)monad on the same category. A \emph{Hopf monad} satisfies conditions analogous to that of a \emph{[[Hopf monoid]]} (\hyperlink{Bruguieres}{Brugui\`e{}res 06}). \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Warning: more than one notion comes up with the names of [[bimonad]] and Hopf monad; there are also related notions of monoidal monad and opmonoidal monad as well of a [[strong monad]]. \hypertarget{monoidal_monads}{}\subsubsection*{{Monoidal monads\ldots{}}}\label{monoidal_monads} A \textbf{monoidal monad} on a monoidal category is a [[monad]] whose underlying [[endofunctor]] is a [[lax monoidal functor]] and such that the unit and multiplication are monoidal natural transformations. Consequently, the [[Kleisli category]] of a monoidal monad has a canonical monoidal structure such that the [[forgetful functor]] is strict monoidal. (\ldots{}) \hypertarget{opmonoidal_monads_with_invertible_fusion}{}\subsubsection*{{Opmonoidal monads with invertible fusion}}\label{opmonoidal_monads_with_invertible_fusion} An \textbf{opmonoidal monad} on a monoidal category is a [[monad]] whose underlying [[endofunctor]] is a [[colax monoidal functor]], and such that the unit and multiplication are monoidal natural transformations. An opmonoidal monad is also called a \textbf{bimonad}. For an opmonoidal monad $T$, one can define the \textbf{left fusion operator} to be the natural transformation \begin{displaymath} T(X\otimes T Y) \to T X \otimes T^2 Y \to T X \otimes T Y \end{displaymath} of the opmonoidal constraint of $T$ and its monad multiplication. Similarly, we have the \textbf{right fusion operator} \begin{displaymath} T(T X\otimes Y) \to T^2 X \otimes T Y \to T X \otimes T Y \end{displaymath} The fusion operators satisfy certain axioms. In fact, an opmonoidal monad structure on $T$ is uniquely determined by a fusion operator (of either sort) along with the monad unit $Id\to T$ and the opmonoidal unit constraint $T I \to I$, satisfying appropriate axioms. An opmonoidal monad is called a \textbf{Hopf monad} if both of its fusion operators are invertible. More generally we have \emph{left} and \emph{right} Hopf monads where only one fusion operator is invertible. This definition is in Brugui\`e{}res-Lack-Virelizier. \hypertarget{distributing_monad_and_comonad_structures}{}\subsubsection*{{Distributing monad and comonad structures}}\label{distributing_monad_and_comonad_structures} Alternatively, one might be tempted to define a Hopf monad to be a [[Hopf monoid]] in the monoidal category of endofunctors, but that monoidal category is not [[symmetric monoidal category|symmetric]] or even [[braided monoidal category|braided]] or [[duoidal category|duoidal]], so this doesn't make sense. However, we can instead ask for a ``local'' braiding in the form of a mixed [[distributive law]]. Thus, we might define a \textbf{bimonad} to be an endofunctor $H$ equipped with the structure of both a monad and a comonad, along with a [[distributive law]] $\lambda: H H \to H H$ satisfying suitable axioms analogous to those of a bimonoid. A bimonad in this sense is a \textbf{Hopf monad} if it has an antipode $s:H\to H$ making the same diagrams commute as for a [[Hopf monoid]]. This definition is in Mesablishvili-Wisbauer. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item If $H$ is a [[bimonoid]] in a [[braided monoidal category]], then the monad $T_H X =H\otimes X$ (whose algebras are $H$-[[modules]]) is opmonoidal, with constraints induced by the comultiplication and counit of $H$. If $H$ is moreover a [[Hopf monoid]], then $T_H$ is a (Brugui\`e{}res-Lack-Virelizier) Hopf monad. \item In fact, if $H$ is a bimonoid as before, then $T_H$ is \emph{also} a bimonad in the sense of Mesablishvili-Wisbauer, with monad and comonad structures induced by the monoid and comonoid structures of $H$. Moreover, if $H$ is a Hopf monoid, then $T_H$ is a Hopf monad in their sense as well. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} If $T$ is a (Brugui\`e{}res-Lack-Virelizier) Hopf monad on a [[closed monoidal category]], then its category of algebras is also closed and the monadic forgetful functor preserves internal-homs. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Hopf algebra]] \item [[Hopf monoid]] \item [[Hopf monoidal category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item wikipedia \href{http://en.wikipedia.org/wiki/Monoidal_monad}{opmonoidal monad} \item [[Kornél Szlachányi]], \emph{The monoidal Eilenberg--Moore construction and bialgebroids}, J. Pure Appl. Algebra \textbf{182}, no. 2--3 (2003) 287--315 \item R. Wisbauer, \emph{Bimonads and Hopf monads on categories}, \href{http://www.math.uni-duesseldorf.de/~wisbauer/Hopfmonad.pdf}{pdf} \item Bachuki Mesablishvili, [[Robert Wisbauer]], \emph{Notes on bimonads and Hopf monads}, Theory Appl. Cat. \textbf{26}:10, 2012, 281-303, \href{http://www.tac.mta.ca/tac/volumes/26/10/26-10abs.html}{abs} \href{http://www.tac.mta.ca/tac/volumes/26/10/26-10.pdf}{pdf} \href{http://arxiv.org/abs/1010.3628}{arxiv/1010.3628} \item D. Chikhladze, S. Lack, [[R. Street]], \emph{Hopf monoidal comonads}, Theory and Appl. of Cat. \textbf{24} (2010) No. 19, 554-563.\href{http://www.tac.mta.ca/tac/volumes/24/19/24-19abs.html}{tac} \item A. Brugui\`e{}res, \emph{Hopf monads}, \href{http://arxiv.org/abs/math/0604180}{math.QA/0604180}; \emph{Hopf monads: an introduction}, an expos\`e{}, \href{http://www.cirm.univ-mrs.fr/videos/2006/exposes/23/Bruguieres.pdf}{pdf}; \emph{Hopf monads, tensor categories and quantum invariants}, an expos\`e{}, \href{http://www.cirm.univ-mrs.fr/videos/2008/exposes/307/Bruguiere.pdf}{pdf}; \emph{Galois-Grothendieck duality, Tannaka duality and Hopf (co)monads}. talk at workshop ``Hopf algebras and tensor categories'', University of Almer\'i{}a, July 4-8, 2011, \href{http://www.ual.es/Congresos/hopf2010/charlas/bruguiertalk.pdf}{pdf} \end{itemize} \begin{itemize}% \item Alain Brugui\`e{}res, [[Steve Lack]], Alexis Virelizier, \emph{Hopf monads on monoidal categories}, \href{http://arxiv.org/abs/1003.1920}{arxiv/1003.1920} \item A. Brugui\`e{}res, A. Virelizier, \emph{The double of a Hopf monad}, Adv. Math. \textbf{227} No. 2, June 2011, pp 745--800, \href{http://arxiv.org/abs/0812.2443}{arxiv/0812.2443} \item Group = Hopf algebra, blog discussion, \href{http://sbseminar.wordpress.com/2007/10/07/group-hopf-algebra}{sbseminar} \item Marek Zawadowski, \emph{The formal theory of monoidal monads}, \href{http://arxiv.org/abs/1012.0547}{arxiv/1012.0547} \item M. Zawadowski, \emph{coMalcev monads}, slides from a talk, \href{http://duch.mimuw.edu.pl/~zawado/Talks/coMalcev_talk.pdf}{pdf} \item [[Ieke Moerdijk]], \emph{Monads on tensor categories}, J. Pure. Appl. Alg. \textbf{168}, 2-3, (2002), 189-208, \item [[Gabriella Böhm]], [[Stephen Lack]], [[Ross Street]], \emph{Weak bimonads and weak Hopf monads}, J. Alg. \textbf{328}, n. 1, Feb 2011, 1-30, \href{http://dx.doi.org/10.1016/j.jalgebra.2010.07.032}{doi}, \href{http://arxiv.org/abs/1002.4493}{arxiv/1002.4493} [[G. Böhm]], \emph{Weak bimonads and weak Hopf monads}, conference slides, 2010, \href{http://www.ual.es/congresos/hopf2010/charlas/bohm.pdf}{pdf} \item S. Willerton, \emph{A diagrammatic approach to Hopf monads}, \href{http://arxiv.org/abs/0807.0658}{arxiv/0807.0658} \item K. Dosen, Z. Petric, \emph{Coherence for monoidal monads and comonads}, \href{http://arxiv.org/abs/0907.2199}{arxiv/0907.2199} \item [[Anders Kock]], \emph{Strong functors and monoidal monads}, \href{http://home.imf.au.dk/kock/SFMM.pdf}{pdf}, Archiv der Math. \textbf{23}: 113--120, (1972) \href{http://dx.doi.org/10.1007%2FBF01304852}{doi}; \emph{Monads on symmetric monoidal categories}, \href{http://home.imf.au.dk/kock/MSMCC.pdf}{pdf} \item B. J. Day, \emph{Note on monoidal monads}, J. Austral. Math. Soc. A \textbf{23}, 292-311 (1977) \href{http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=4897004}{pdf} \item Alain Brugui\`e{}res, Sonia Natale, \emph{Exact sequences of tensor categories}, \href{http://arxiv.org/abs/1006.0569}{arXiv:math.QA/1006.0569} (generalizes Schneider's work on [[exact sequences of Hopf algebras]]; uses Hopf monads) \end{itemize} [[!redirects Hopf monads]] [[!redirects bimonad]] [[!redirects opmonoidal monad]] \end{document}