\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{I8} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{InflowToM5BraneAnomaly}{Inflow to M5-brane anomalies}\dotfill \pageref*{InflowToM5BraneAnomaly} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In the [[string theory]]-literature ``$I_8$'' is the standard notation for a certain [[characteristic class]] of [[manifolds]] (of their [[tangent bundles]]): It is a [[rational numbers|rational]] linear combination of the [[cup product|cup square]] of the [[first fractional Pontryagin class]] with itself, and the [[second Pontryagin class]]: \begin{equation} I_8 \;\coloneqq\; \tfrac{1}{48} \Big( p_2 \;-\; \big( \tfrac{1}{2} p_1\big)^2 \Big) \;\; \in H^8\big( -, \mathbb{Q}\big) \,. \label{TheTerm}\end{equation} In general this is a [[cohomology class]] in [[ordinary cohomology]] with [[rational number|rational]] [[coefficients]], though in applications it appears in further rational combination with other classes that in total yield a class in [[integral cohomology]]. The expression \eqref{TheTerm} controls certain [[quantum anomaly cancellation]] in [[M-theory]] and [[type IIA string theory]] (\hyperlink{VafaWitten95}{Vafa-Witten 95}, \hyperlink{DuffLiuMinasian95}{Duff-Liu-Minasian 95 (3.10) with (3.14)}). Since it was first obtain as a [[1-loop]]-contribution in [[perturbative quantum gravity|perturbative quantum]] [[supergravity]], it is often known as \emph{the one-loop anomaly term} or the \emph{one-loop anomaly polynomial} in [[M-theory]]/[[type IIA string theory]]. $\backslash$linebreak \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{InflowToM5BraneAnomaly}{}\subsubsection*{{Inflow to M5-brane anomalies}}\label{InflowToM5BraneAnomaly} Consider an 11-dimensional [[spin structure|spin]]-[[manifold]] $X^{(11)}$ and a 2-parameter family of 6-dimensional [[submanifolds]] $Q_{M5} \hookrightarrow X^{(11)}$. When regarded as a family of [[worldvolumes]] of an [[M5-brane]], the family of [[normal bundles]] $N_X Q_{M5}$ of this inclusion carries a [[characteristic class]] \begin{equation} I^{M5} \;\coloneqq\; I^{M5}_{\psi} + I_{C} \;\in\; H^8(F \times Q_{M5},\mathbb{Z}) \label{IM5}\end{equation} where \begin{enumerate}% \item the first summand is the class of the [[chiral anomaly]] of [[chiral fermions]] on $Q_{M5}$ (\hyperlink{Witten96}{Witten 96, (5.1)}), \item the second term the class of the [[quantum anomaly]] of a [[self-dual higher gauge field]] (\hyperlink{Witten96}{Witten 96, (5.4)}) \end{enumerate} Moreover, there is the restriction of the $I_8$-term \eqref{TheTerm} to $Q_{M5}$, hence to the [[tangent bundle]] of $X^{11}$ to $Q_{M5}$ (the ``anomaly inflow'' from the [[bulk spacetime]] to the M5-brane) \begin{equation} I_8\vert_{M5} \;\coloneqq\; I_8 \big( T_{Q_{M5}} X \big) \;\in\; H^8(F \times Q_{M5},\mathbb{Z}) \,. \label{I8AnomalyInflow}\end{equation} The sum of these cohomology classes, evaluated on the [[fundamental class]] of $Q_{M5}$ is proportional to the [[second Pontryagin class]] of the [[normal bundle]] \begin{equation} I^{M5} \;+\; I_8\vert_{M5} \;=\; \tfrac{1}{24} p_2(N_{Q_{M5}}) \label{SumOfM5AndInflowAnomalyIsp2}\end{equation} (\hyperlink{Witten96}{Witten 96 (5.7)}) This result used to be ``somewhat puzzling'' (\hyperlink{Witten96}{Witten 96, p. 35}) since consisteny of the [[M5-brane]] in [[M-theory]] should require its total [[quantum anomaly]] to vanish. But $p_2(N_{Q_{M5}})$ does not in general vanish, and the right conditions to require under which it does vanish were ``not clear'' (\hyperlink{Witten96}{Witten 96, p. 37}). (For more details on computations involved this and the following arguments, see also \hyperlink{BilalMetzger03}{Bilal-Metzger 03}). A resolution was proposed in (\hyperlink{FreedHarveyMinasianMoore98}{Freed-Harvey-Minasian-Moore 98}), further clarified in (\hyperlink{Monnier13}{Monnier 13}), see also (\hyperlink{BahBonettiMinasianNardoni18}{Bah-Bonetti-Minasian-Nardoni 18}). There it is asserted that \begin{enumerate}% \item the correct bulk anomaly inflow is not just that from $I_8$ itself, but includes also a contribution from the class $G_4$ of the [[supergravity C-field]], as per \eqref{FiberIntegration} below (\hyperlink{Monnier13}{Monnier 13, around (3.11)}); \item for $G^{M5}_4$ the ``restriction'' of the class of the [[supergravity C-field]] to $Q_{M5}$, the term $I^{M5}_{C}$ in \eqref{IM5} should have a further summand $-\tfrac{1}{2}\big( G_4^{M5} \big)^2$ (\hyperlink{Monnier13}{Monnier 13, around (3.7)}, using \hyperlink{Monnier14b}{Monnier 14b, (2.13)}) \item for 11d spacetime a [[4-sphere]]-[[fiber bundle]], \begin{displaymath} \itexarray{ S^4 &\longrightarrow& X^{(11)} \\ && \big\downarrow^{\mathrlap{\pi}} \\ && X^{(6)} } \end{displaymath} as befits the [[near horizon geometry]] of a [[black brane|black]] [[M5-brane]], the [[supergravity C-field]] should be taken to be of the form (\hyperlink{Monnier13}{Monnier 13, (3.12)}) \begin{displaymath} G_4 =\coloneqq \tfrac{1}{2}\chi + \pi^\ast(G^{M5}_4) \end{displaymath} with $\tfrac{1}{2}\chi$ the degree-4 [[Euler class]], whose integral over the 4-sphere fiber is unity (\href{Sullivan+model+of+a+spherical+fibration#SullivanModelForSphericalFibration}{this Prop.}), reflecting the presence of a single M5. \end{enumerate} By this proposal (also \hyperlink{BahBonettiMinasianNardoni18}{Bah-Bonetti-Minasian-Nardoni 18 (5)}, \hyperlink{BBMN19}{BBMN 19 (2.9) and appendix A.4, A.5}), the anomaly inflow from the bulk would not be just $I_8$, as in \eqref{I8AnomalyInflow} but would be all of the following [[fiber integration]] \begin{equation} \itexarray{ \pi_\ast \Big( - \tfrac{1}{6} G_4 G_4 G_4 + G_4 I_8 \Big) & = - \tfrac{1}{24} p_2 + \tfrac{1}{2}(G^{M5}_4)^2 + I_8 } \label{FiberIntegration}\end{equation} Here we used \href{Spin5#FiberIntegrationOfCupPowersOfChiOver4Sphere}{this Prop} to find that \begin{displaymath} \pi_\ast\big( \chi^3 \big) \;=\; 2 p_2 \end{displaymath} which would cancel against the first term $\tfrac{1}{24} p_2$ in \eqref{FiberIntegration}. Hence with this proposal, the remaining M5-brane anomaly \eqref{SumOfM5AndInflowAnomalyIsp2} would be canceled. $\backslash$linebreak \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Pontryagin classes]], [[Stiefel-Whitney classes]], [[Wu classes]], [[Euler class]] \item [[C-field tadpole cancellation]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The term showed in [[string theory]]/[[M-theory]] [[anomaly cancellation]] in \begin{itemize}% \item [[Cumrun Vafa]], [[Edward Witten]], \emph{A One-Loop Test Of String Duality}, Nucl.Phys.B447:261-270, 1995 (\href{https://arxiv.org/abs/hep-th/9505053}{arXiv:hep-th/9505053}) \item [[Mike Duff]], [[James Liu]], [[Ruben Minasian]], \emph{Eleven Dimensional Origin of String/String Duality: A One Loop Test}, Nucl.Phys. B452 (1995) 261-282 (\href{https://arxiv.org/abs/hep-th/9506126}{arXiv:hep-th/9506126}) \item [[Edward Witten]], \emph{Five-Brane Effective Action In M-Theory}, J.Geom.Phys.22:103-133, 1997 (\href{https://arxiv.org/abs/hep-th/9610234}{arXiv:hep-th/9610234}) \end{itemize} For further discussion see \begin{itemize}% \item [[Hisham Sati]], \emph{[[Geometric and topological structures related to M-branes]]} , part I, Proc. Symp. Pure Math. 81 (2010), 181-236 (\href{http://arXiv.org/abs/1001.5020}{arXiv:1001.5020}), part \emph{II: Twisted $String$ and $String^c$ structures}, J. Australian Math. Soc. 90 (2011), 93-108 (\href{http://arxiv.org/abs/1007.5419}{arXiv:1007.5419}); part \emph{III: Twisted higher structures}, Int. J. Geom. Meth. Mod. Phys. 8 (2011), 1097-1116 (\href{http://arxiv.org/abs/1008.1755}{arXiv:1008.1755}) \end{itemize} In relation to the [[quantum anomaly]] of the [[M5-brane]]: The original computation of the total M5-brane anomaly due to \begin{itemize}% \item \hyperlink{Witten96}{Witten 96} \end{itemize} left a remnant term of $\tfrac{1}{24} p_2$. It was argued in \begin{itemize}% \item [[Dan Freed]], [[Jeff Harvey]], [[Ruben Minasian]], [[Greg Moore]], \emph{Gravitational Anomaly Cancellation for M-Theory Fivebranes}, Adv.Theor.Math.Phys.2:601-618, 1998 (\href{https://arxiv.org/abs/hep-th/9803205}{arXiv:hep-th/9803205}) \item [[Jeff Harvey]], [[Ruben Minasian]], [[Greg Moore]], \emph{Non-abelian Tensor-multiplet Anomalies}, JHEP9809:004, 1998 (\href{https://arxiv.org/abs/hep-th/9808060}{arXiv:hep-th/9808060}) \item [[Adel Bilal]], Steffen Metzger, \emph{Anomaly cancellation in M-theory: a critical review}, Nucl.Phys. B675 (2003) 416-446 (\href{https://arxiv.org/abs/hep-th/0307152}{arXiv:hep-th/0307152}) \end{itemize} that this term disappears (cancels) when properly taking into account the singularity of the [[supergravity C-field]] at the locus of the [[black brane|black]] [[M5-brane]]. A more transparent version of this argument was offered in \begin{itemize}% \item Samuel Monnier, \emph{Global gravitational anomaly cancellation for five-branes}, Advances in Theoretical and Mathematical Physics, Volume 19 (2015) 3 (\href{https://arxiv.org/abs/1310.2250}{arXiv:1310.2250}) \end{itemize} based on a refined discussion of the quantum anomaly of the [[self-dual higher gauge field]] on the M5-brane in \begin{itemize}% \item Samuel Monnier, \emph{The anomaly line bundle of the self-dual field theory}, Comm. Math. Phys. 325 (2014) 41-72 (\href{http://arxiv.org/abs/1109.2904}{arXiv:1109.2904}) \item Samuel Monnier, \emph{The global gravitational anomaly of the self-dual field theory}, Comm. Math. Phys. 325 (2014) 73-104 (\href{http://arxiv.org/abs/1110.4639}{arXiv:1110.4639}, \href{http://www.physics.rutgers.edu/het/video/monnier11b.pdf}{pdf slides}) \end{itemize} This formulation via an anomaly 12-form is (re-)derived also in \begin{itemize}% \item Ibrahima Bah, Federico Bonetti, [[Ruben Minasian]], Emily Nardoni, \emph{Class $\mathcal{S}$ Anomalies from M-theory Inflow}, Phys. Rev. D 99, 086020 (2019) (\href{https://arxiv.org/abs/1812.04016}{arXiv:1812.04016}) \item Ibrahima Bah, Federico Bonetti, [[Ruben Minasian]], Emily Nardoni, \emph{Anomaly Inflow for M5-branes on Punctured Riemann Surfaces} (\href{https://arxiv.org/abs/1904.07250}{arXiv:1904.07250}) \end{itemize} [[!redirects one-loop anomaly polynomial I8]] \end{document}