\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{IKKT matrix model} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ReferencesComputerSimulation}{Computer simulation}\dotfill \pageref*{ReferencesComputerSimulation} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[KK-compactification]] of [[D=10 super Yang-Mills theory]] all the way to the point yields a [[theory (physics)|theory]] whose [[field (physics)|fields]] are simply elements of the gauge [[Lie algebra]] $\mathfrak{g}$, hence [[matrices]] for a [[matrix Lie algebra]]. This [[model (physics)|physics]] is called the \emph{IKKT matrix model}. Alternatively this model can be motivated from a certain regularization of the [[worldsheet]] [[action functional]] of the [[superstring]]. This is how it was originally obtained in (\hyperlink{IKKT96}{IKKT 96}). It has been argued that for $\mathfrak{g} = \mathfrak{su}(N)$ for large $N$, this model captures aspects of [[non-perturbative field theory|non-perturbative]] [[type IIB string theory]] (see also at \emph{[[M-theory]]}). Therefore this is also called the \emph{IIB matrix model} (in contast to the [[BFSS matrix model]] in [[type IIA string theory]]). Several authors have explored the possibility to lift the derivation of the IKKT model from the [[superstring]] to the [[M2-brane]]. See at \emph{[[membrane matrix model]]} for more on this. In (\hyperlink{KimNishimuraTsuchiya12}{Kim-Nishimura-Tsuchiya 12}) it is claimed that computer simulation of the IKKT matrix model, regarded as non-perturbative [[type IIB string theory]], shows a spontaneous emerging spacetime of macroscopic dimension 3+1, with 6 microscopic dimensions. (A similar claim results from a very different argument: the \emph{[[Brandenberger-Vafa mechanism]]}.) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[BFSS matrix model]] \item [[lattice gauge theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The original articles are \begin{itemize}% \item N. Ishibashi, H. Kawai, Y. Kitazawa, A. Tsuchiya, \emph{A Large-N Reduced Model as Superstring}, Nucl.Phys. B498 (1997) 467-491 (\href{http://arxiv.org/abs/hep-th/9612115}{arXiv:hep-th/9612115}) \item H. Aoki, S. Iso, H. Kawai, Y. Kitazawa, T. Tada, A. Tsuchiya, \emph{IIB Matrix Model}, Prog.Theor.Phys.Suppl.134:47-83,1999 (\href{http://arxiv.org/abs/hep-th/9908038}{arXiv:hep-th/9908038}) \end{itemize} See also \begin{itemize}% \item [[Mikhail Movshev]], [[Albert Schwarz]], \emph{On maximally supersymmetric Yang-Mills theories}, Nucl.Phys. B681 (2004) 324-350 (\href{https://arxiv.org/abs/hep-th/0311132}{arXiv:hep-th/0311132}) \end{itemize} Derivation from [[open string field theory]] is discussed in \begin{itemize}% \item [[Taejin Lee]], \emph{Covariant Open String Field Theory on Multiple D$p$-Branes} (\href{https://arxiv.org/abs/1703.06402}{arXiv:1703.06402}) \end{itemize} Arguments that full [[Yang-Mills theory]] generalized to [[noncommutative geometry]] is recovered as the [[perturbation theory]] around classical solutions of the IKKT model are in \begin{itemize}% \item H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa, T. Tada, \emph{Noncommutative Yang-Mills in IIB Matrix Model}, Nucl.Phys. B565 (2000) 176-192 (\href{http://arxiv.org/abs/hep-th/9908141}{arXiv:hep-th/9908141}) \item Tatsuo Azeyanagi, Masanori Hanada, Tomoyoshi Hirata, \emph{On Matrix Model Formulations of Noncommutative Yang-Mills Theories}, Phys.Rev.D78:105017,2008 (\href{http://arxiv.org/abs/0806.3252}{arXiv:0806.3252}) \end{itemize} Arguments that [[closed string field theory]] arises from the [[dynamics]] of [[Wilson loops]] IKKT model are in \begin{itemize}% \item M. Fukuma, H. Kawai, Y. Kitazawa, A. Tsuchiya, \emph{String Field Theory from IIB Matrix Model}, Nucl.Phys.B510:158-174,1998 (\href{http://arxiv.org/abs/hep-th/9705128}{arXiv:hep-th/9705128}) \item Daiji Ennyu, Hiroshi Kawabe, Naohito Nakazawa, \emph{Note on a Closed String Field Theory from Bosonic IIB Matrix Model}, JHEP 0301 (2003) 025 (\href{http://arxiv.org/abs/hep-th/0212044}{arXiv:hep-th/0212044}) \end{itemize} Possibilities of generalizing the IKKT model from [[Lie algebras]] to [[Lie 2-algebras]] in some [[membrane matrix model]] are explored in \begin{itemize}% \item [[Patricia Ritter]], [[Christian Saemann]], \emph{Lie 2-algebra models} (\href{http://arxiv.org/abs/1308.4892}{arXiv:1308.4892}) \end{itemize} Discussion of [[standard model of particle physics|standard model]] [[phenomenology]] within the IKKT model includes \begin{itemize}% \item [[Harold Steinacker]], Jochen Zahn, \emph{An extended standard model and its Higgs geometry from the matrix model}, PTEP 2014 (2014) 8, 083B03 (\href{http://arxiv.org/abs/1401.2020}{arXiv:1401.2020}) \end{itemize} See also \begin{itemize}% \item A. Stern, Chuang Xu, \emph{Signature change in matrix model solutions} (\href{https://arxiv.org/abs/1808.07963}{arXiv:1808.07963}) \end{itemize} \hypertarget{ReferencesComputerSimulation}{}\subsubsection*{{Computer simulation}}\label{ReferencesComputerSimulation} There are claims that numerical computer simulations (as in [[lattice gauge theory]], see the references \href{lattice+gauge+theory#ForSuperYangMills}{there}) show that the IKKT matrix model predicts a spontanously generated spacetime where exactly 3+1 dimensions become macroscopic (hence effectively predicts \emph{[[moduli stabilization]]} in spintaneous [[KK-compactification]] of [[M-theory]] to $D = 3+1$ macroscopic dimensions ): \begin{itemize}% \item S.-W. Kim, J. Nishimura, and A. Tsuchiya, \emph{Expanding (3+1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9+1)-dimensions}, Phys. Rev. Lett. 108, 011601 (2012), (\href{https://arxiv.org/abs/1108.1540}{arXiv:1108.1540}). \item S.-W. Kim, J. Nishimura, and A. Tsuchiya, \emph{Late time behaviors of the expanding universe in the IIB matrix model}, JHEP 10, 147 (2012), (\href{https://arxiv.org/abs/1208.0711}{arXiv:1208.0711}). \item Yuta Ito, Jun Nishimura, Asato Tsuchiya, \emph{Large-scale computation of the exponentially expanding universe in a simplified Lorentzian type IIB matrix model} (\href{https://arxiv.org/abs/1512.01923}{arXiv:1512.01923}) \item Toshihiro Aoki, Mitsuaki Hirasawa, Yuta Ito, Jun Nishimura, Asato Tsuchiya, \emph{On the structure of the emergent 3d expanding space in the Lorentzian type IIB matrix model} (\href{https://arxiv.org/abs/1904.05914}{arXiv:1904.05914}) \end{itemize} [[!redirects IIB matrix model]] [[!redirects IKKT model]] \end{document}