\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Jónsson-Tarski topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{rosenthals_approach}{Rosenthal's approach}\dotfill \pageref*{rosenthals_approach} \linebreak \noindent\hyperlink{jnssontarski_toposes_and_selfsimilarity}{J\'o{}nsson-Tarski toposes and self-similarity}\dotfill \pageref*{jnssontarski_toposes_and_selfsimilarity} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{J\'o{}nsson-Tarski topos} is `the topos analogue of the [[Cantor space]]'.\footnote{Quote from Bunge\&Funk (2006, p.183).} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The \textbf{J\'o{}nsson-Tarski topos} $\mathcal{J}_2$ is the category of [[Jónsson-Tarski algebras]] considered as topos, i.e. its objects are sets $X$ together with an isomorphism $X\to X\times X$ and morphisms are functions that commute with the structure isomorphisms. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item $\mathcal{J}_2$ is an example of an [[algebraic variety]] that is also a topos (cf. Johnstone 1985). \item $\mathcal{J}_2=Sh(M_2,J)$ where $M_2$ is the free monoid on two generators $a, b$ and $J$ is the [[coverage]] whose only covering family on the unique object $\cdot$ of $M_2$ is $\{a:\cdot\rightarrow \cdot ,b:\cdot\rightarrow\cdot\}$. So $\mathcal{J}_2$ is in a fact a [[Grothendieck topos]]. \item $M_2$, as a free monoid, is cancellative, hence all-monic and, accordingly, $\mathcal{J}_2$ is an [[étendue]] ([[Peter Freyd]]). It is discussed from this [[étendue|perspective]] as a [[petit topos]] for \emph{labeled graphs} in (Lawvere 1989). \item Actually, Freyd observed that $\mathcal{J}_2/F(1)\cong Sh(2^\mathbb{N})$ with $F(1)$ the free J\'o{}nsson-Tarski algebra on one generator and $2^\mathbb{N}$ the [[Cantor space]] - this motivates the above quote from Bunge\&Funk: $\mathcal{J}_2$ looks locally like (the sheaf topos on) $2^\mathbb{N}$ ! $Sh(2^\mathbb{N})$ classifies ` subsets of $\mathbb{N}$ ` in the sense that for cocomplete $\mathcal{E}$ geometric morphisms $\mathcal{E}\to Sh(2^\mathbb{N})$ correspond to morphisms $\Delta(\mathbb{N})\to\Delta(2)$ in $\mathcal{E}$, with $\Delta$ the [[constant sheaf functor]] (cf. \hyperlink{MacLaneMoerdijk}{Mac Lane\& Moerdijk}, ex.VIII.10, pp.470-71). \end{itemize} \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} The idea to consider generalizations of $\mathcal{J}_2$ seemed to have appeared first in the context of work on \'e{}tendues (Rosenthal 1981, Lawvere 1989). \hypertarget{rosenthals_approach}{}\subsubsection*{{Rosenthal's approach}}\label{rosenthals_approach} K. Rosenthal (1981) starts from two basic facts about \'e{}tendues, namely that $Set^{\mathcal{C}^{op}}$ is an [[étendue]] iff all morphisms in $\mathcal{C}$ are monic, and that $Sh(\mathcal{E},J)$ is an \'e{}tendue if $\mathcal{E}$ is an \'e{}tendue. His goal is to construct \'e{}tendues from an all-monic $\mathcal{C}$ by defining a topology $J$ on $Set^{\mathcal{C}^{op}}$ from a functor $H:\mathcal{C}\to Set$ satisfying: \begin{enumerate}% \item $H(f)$ is monic ,and \item if $x\in Im(H(f))\cap Im(H(g))$ then there is $k\in\mathcal{C}$ with $k\leq f$ and $k\leq g$ such that $x\in Im(H(k))$. \end{enumerate} Now given $X\in\mathcal{C}$ and a sieve $B\in\Omega(X)$ define a sieve $j_X(B):=\{\quad f\in\mathcal{C}| cod(f)=X\quad\wedge\quad Im(H(f))\subseteq\bigcup _{g\in B} Im(H(g))\quad\}.$ The resulting map $j:\Omega\to\Omega$ is a topology. For $\mathcal{C}^{op}=\mathcal{M}_2$, the free monoid on two generators, and $H(X)=2^\mathbb{N}$, the functor constantly the Cantor set, this yields $\mathcal{J}_2$. The generalization to $\mathcal{C}^{op}=\mathcal{M}_\infty$, the free monoid on countably infinite many generators, and the [[Baire space of sequences|Baire space]] $\mathbb{B}=\mathbb{N}^\mathbb{N}$ exhibits the \textbf{infinite J\'o{}nsson-Tarski topos} $\mathcal{J}_\infty$, i.e. the category of sets $A$ with an isomorphism to $A^\mathbb{N}$, as $Sh(\mathbb{N}^\mathbb{N})$ locally. \hypertarget{jnssontarski_toposes_and_selfsimilarity}{}\subsubsection*{{J\'o{}nsson-Tarski toposes and self-similarity}}\label{jnssontarski_toposes_and_selfsimilarity} Work on a categorical concept of self-similarity led [[Tom Leinster|T. Leinster]] (2007) to another generalization of the J\'o{}nsson-Tarski topos. The first hint to a connection stems from the self-similarity system $M:\mathbf{1}⇸ \mathbf{1}$ with $M=\{0,1\}$ which is just a profunctorial instruction to paste two copies of a space $X$ together and the universal solution none other than the [[Cantor space]] $2^\mathbb{N}$. Caveat: this entry is still under construction! \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[Jónsson-Tarski algebra]] \item [[Cantor space]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Marta Bunge]], [[Jonathon Funk]], \emph{Singular Coverings of Toposes} , Springer LNM vol. 1890, Heidelberg 2006. \item [[Peter Johnstone]], \emph{When is a Variety a Topos?} , Algebra Universalis \textbf{21} (1985) pp.198-212. \item [[Peter Johnstone]], \emph{Collapsed Toposes as Bitopological Spaces} , pp.19-35 in \emph{Categorical Topology} , World Scientific Singapore 1989. \item [[Peter Johnstone]], \emph{Collapsed Toposes and Cartesian Closed Varieties} , JA \textbf{129} (1990) pp.446-480. \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]] vol. I} , Oxford UP 2002. (sec. A2.1, p.80) \item [[Peter Johnstone|P. T. Johnstone]], A. J. Power, T. Tsujishita, H. Watanabe, J. Worrell, \emph{The structure of categories of coalgebras} , Theoret. Comp. Sci \textbf{260} (2001) pp.87-117. \item [[F. William Lawvere]], \emph{Qualitative Distinctions between some Toposes of Generalized Graphs} , Cont. Math. \textbf{92} (1989) pp.261-299. \item [[Tom Leinster]], \emph{J\'o{}nsson-Tarski toposes}, Talk Nice 2007. (\href{http://www.maths.ed.ac.uk/~tl/nice/jt.pdf}{slides}) \item [[Saunders Mac Lane|S. Mac Lane]], [[Ieke Moerdijk|I. Moerdijk]], \emph{Sheaves in Geometry and Logic} , Springer Heidelberg 1994. (pp.470-471) \item [[Kimmo I. Rosenthal]], \emph{\'E{}tendues and Categories with Monic Maps} , JPAA \textbf{22} (1981) pp.193-212. \item James Worrell, \emph{A Note on Coalgebras and Presheaves} , Electronic Notes in Theoretical Computer Science \textbf{65} no.3 (2003) pp.1-10. \end{itemize} [[!redirects Jonsson-Tarski topos]] [[!redirects Jonsson-Tarski Topos]] \end{document}