\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{J-homomorphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{OnGroups}{On groups}\dotfill \pageref*{OnGroups} \linebreak \noindent\hyperlink{delooped_on_classifying_spaces_and_ktheory_classes}{Delooped: On classifying spaces and K-theory classes}\dotfill \pageref*{delooped_on_classifying_spaces_and_ktheory_classes} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{Image}{Image of the J-homomorphism}\dotfill \pageref*{Image} \linebreak \noindent\hyperlink{ImageOfJTradtionalFormulation}{Traditional formulation}\dotfill \pageref*{ImageOfJTradtionalFormulation} \linebreak \noindent\hyperlink{description_of_the_image}{Description of the image}\dotfill \pageref*{description_of_the_image} \linebreak \noindent\hyperlink{characterization_via_the_adams_operations}{Characterization via the Adams operations}\dotfill \pageref*{characterization_via_the_adams_operations} \linebreak \noindent\hyperlink{the_jspectrum}{The J-spectrum}\dotfill \pageref*{the_jspectrum} \linebreak \noindent\hyperlink{ImageOfJInChromotopy}{Formulation in chromatic homotopy theory}\dotfill \pageref*{ImageOfJInChromotopy} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{the_image_of_j}{The image of J}\dotfill \pageref*{the_image_of_j} \linebreak \noindent\hyperlink{equivariant_enhancement}{Equivariant enhancement}\dotfill \pageref*{equivariant_enhancement} \linebreak \noindent\hyperlink{relation_to_action_on_general_spectra}{Relation to $O$-action on general spectra}\dotfill \pageref*{relation_to_action_on_general_spectra} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{$J$-homomorphism} is traditionally a family of [[group]] [[homomorphisms]] \begin{displaymath} J_i \;\colon\; \pi_i(O(n)) \longrightarrow \pi_{n+i}(S^n) \end{displaymath} from the [[homotopy groups]] of (the [[topological space]] underlying) the [[orthogonal group]] to the [[homotopy groups of spheres]]. This refines to a morphism of [[∞-groups]] \begin{displaymath} J \;\colon\; O \longrightarrow GL_1(\mathbb{S}) \end{displaymath} from the [[stable orthogonal group]] (regarded as a [[group object in an (∞,1)-category|group object]] in $L_{whe} Top \simeq$ [[∞Grpd]]) to the [[∞-group of units]] of the [[sphere spectrum]], regarded as an [[E-∞ ring spectrum]]. By postcomposition, the [[delooping]] of the J-homomorphism \begin{displaymath} B J \;\colon\; B O \to B GL_1(\mathbb{S}) \end{displaymath} sends real [[vector bundles]] to [[sphere bundles]], namely to [[(∞,1)-line bundles]] with typical [[fiber]] the [[sphere spectrum]] $\mathbb{S}$. See also at \emph{[[Thom space]]} for more on this. The description of the image of the $J$-homomorphism in the [[stable homotopy groups of spheres]] was an important precursor to the development of [[chromatic homotopy theory]], which is used to explain the periodicities seen in the image of the J-homomorphism (see also \hyperlink{Lurie}{Lurie 10, remark 8}). See also at \emph{[[periodicity theorem]]}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{OnGroups}{}\subsubsection*{{On groups}}\label{OnGroups} \begin{defn} \label{SphereAsCompactification}\hypertarget{SphereAsCompactification}{} For $n \in \mathbb{N}$ regard the $n$-[[sphere]] (as a [[topological space]]) as the [[one-point compactification]] of the [[Cartesian space]] $\mathbb{R}^n$ \begin{displaymath} S^n \simeq (\mathbb{R}^n)^\ast \,. \end{displaymath} \end{defn} \begin{remark} \label{ActionOfOrthogonalOnSphere}\hypertarget{ActionOfOrthogonalOnSphere}{} Since the process of [[one-point compactification]] is a [[functor]] on [[proper maps]], hence on [[homeomorphisms]], via def. \ref{SphereAsCompactification} the $n$-sphere inherits from the canonical [[action]] of the [[orthogonal group]] $O(n)$ on $\mathbb{R}^n$ an [[action]] \begin{displaymath} O(n) \times S^n \longrightarrow S^n \end{displaymath} (by [[continuous maps]]) which preserves the base point (the ``point at infinity''). \end{remark} For definiteness we distinguish in the following notationally between \begin{enumerate}% \item the $n$-[[sphere]] $S^n \in Top$ regarded as a [[topological space]]; \item its [[homotopy type]] $\Pi(S^n) \in L_{whe} Top \simeq$ [[∞Grpd]] given by its [[fundamental ∞-groupoid]]. \end{enumerate} Similarly we write $\Pi(O(n))$ for the [[homotopy type]] of the [[orthogonal group]], regarded as a [[group object in an (∞,1)-category]] in [[∞Grpd]] (using that the [[shape modality]] $\Pi$ preserves [[finite products]]). \begin{defn} \label{AutoequivalencesOfnSphere}\hypertarget{AutoequivalencesOfnSphere}{} For $n \in \mathbb{N}$ write $H(n)$ for the [[automorphism ∞-group]] of homotopy self-equivalences $S^n \longrightarrow S^n$, hence \begin{displaymath} H(n) \coloneqq Aut_{\infty Grpd^{\ast/}}(\Pi(S^n)) \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} The [[∞-group]] $H(n)$, def. \ref{AutoequivalencesOfnSphere}, constitutes the two [[connected components]] of the $n$-fold based [[loop space]] $\Omega^n S^n$ corresponding to the [[homotopy groups]] $\pm 1 \in \pi_n(S^n)$. \end{remark} \begin{defn} \label{OrthogonalActionOnSphereOnHomotopyGroups}\hypertarget{OrthogonalActionOnSphereOnHomotopyGroups}{} Via the presentation of [[∞Grpd]] by the [[cartesian closed model structure|cartesian closed]] [[model structure on topological spaces|model structure on compactly generated topological spaces]] (and using that $S^n$ and $O(n)$ and hence their product are [[compact topological spaces|compact]]) we have that for $n \in \mathbb{N}$ the [[continuous function|continuous]] [[action]] of $O(n)$ on $S^n$ of remark \ref{ActionOfOrthogonalOnSphere}, which by [[cartesian closed category|cartesian closure]] is equivalently a homomorphism of [[topological groups]] of the form \begin{displaymath} O(n) \longrightarrow Aut_{Top^{\ast/}}(S^n) \,, \end{displaymath} induces a homomorphism of [[∞-groups]] of the form \begin{displaymath} \Pi(O(n)) \longrightarrow Aut_{\infty Grpd^{\ast/}}(\Pi(S^n)) \,. \end{displaymath} This in turn induces for each $i \in \mathbb{N}$ homomorphisms of [[homotopy groups]] of the form \begin{displaymath} \pi_i(O(n)) \longrightarrow \pi_i(\Omega^n S^n) \simeq \pi_{n+i}(S^n) \,. \end{displaymath} \end{defn} \begin{remark} \label{OrthogonalActionOnSphereOnHomotopyGroups}\hypertarget{OrthogonalActionOnSphereOnHomotopyGroups}{} By construction, the homomorphisms of remark \ref{OrthogonalActionOnSphereOnHomotopyGroups} are compatible with [[suspension]] in that for all $n \in \mathbb{N}$ the [[diagrams]] \begin{displaymath} \itexarray{ O(n) &\longrightarrow& Aut_{Top^{\ast/}}(S^n) \\ \downarrow && \downarrow \\ O(n+1) &\longrightarrow& Aut_{Top^{\ast/}}(S^{n+1}) } \end{displaymath} in $Grp(Top)$ commute, and hence so do the diagrams \begin{displaymath} \itexarray{ \Pi(O(n)) &\longrightarrow& Aut_{\infty Grpd^{\ast/}}(\Pi(S^n)) \\ \downarrow && \downarrow \\ \Pi(O(n+1)) &\longrightarrow& Aut_{\infty Grpd^{\ast/}}(\Pi(S^{n+1})) } \end{displaymath} in $Grp(\infty Grpd)$, up to [[homotopy]]. \end{remark} Therefore one can take the [[direct limit]] over $n$: \begin{defn} \label{JHom}\hypertarget{JHom}{} By remark \ref{OrthogonalActionOnSphereOnHomotopyGroups} there is induced a homomorphism \begin{displaymath} J_i \;\colon\; \pi_\bullet(O) \longrightarrow \pi_\bullet(\mathbb{S}) \end{displaymath} from the [[homotopy groups]] of the [[stable orthogonal group]] to the [[stable homotopy groups of spheres]]. This is called the \textbf{J-homomorphism}. \end{defn} \hypertarget{delooped_on_classifying_spaces_and_ktheory_classes}{}\subsubsection*{{Delooped: On classifying spaces and K-theory classes}}\label{delooped_on_classifying_spaces_and_ktheory_classes} \begin{remark} \label{DeloopedJ}\hypertarget{DeloopedJ}{} Since the maps of def. \ref{OrthogonalActionOnSphereOnHomotopyGroups} are [[∞-group]] [[homomorphisms]], there exists their [[delooping]] \begin{displaymath} B J \;\colon\; B O \longrightarrow B GL_1(\mathbb{S}) = B H \,. \end{displaymath} \end{remark} \begin{remark} \label{}\hypertarget{}{} Here $GL_1(\mathbb{S})$ is the [[∞-group of units]] of the [[sphere spectrum]]. \end{remark} This map $B J$ is the [[universal characteristic class]] of stable [[vector bundles]] with values in [[spherical fibrations]]: \begin{defn} \label{SphereBundleOfVectorBundle}\hypertarget{SphereBundleOfVectorBundle}{} For $V \to X$ a [[vector bundle]], write $S^V$ for its [[fiber]]-wise [[one-point compactification]]. This is a [[sphere bundle]]/[[spherical fibration]]. Write $\mathbb{S}^V$ for the $X$-[[parameterized spectrum]] which is fiberwise the [[suspension spectrum]] of $S^V$. \end{defn} It is immediate that: \begin{prop} \label{SphericalFibrationsOfVectorBundlesClassifiedViaJ}\hypertarget{SphericalFibrationsOfVectorBundlesClassifiedViaJ}{} \textbf{([[spherical fibrations]] of [[vector bundles]] classified via J-homomorphism)} For $V \to X$ a [[vector bundle]] classified by a map $X \to B O$, the corresponding [[spherical fibration]] $\mathbb{S}^V$, def. \ref{SphereBundleOfVectorBundle}, is classified by $X \to B O \stackrel{B J}{\longrightarrow} B GL_1(\mathbb{S})$, def. \ref{DeloopedJ}. \end{prop} This construction descends to a map \begin{displaymath} KO^0(X) \longrightarrow Sph(X) \end{displaymath} from [[topological K-theory]] to [[spherical fibrations]] (\ldots{}) (\href{http://mathoverflow.net/a/156369/381}{MO discussion}) \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{Image}{}\subsubsection*{{Image of the J-homomorphism}}\label{Image} \hypertarget{ImageOfJTradtionalFormulation}{}\paragraph*{{Traditional formulation}}\label{ImageOfJTradtionalFormulation} \hypertarget{description_of_the_image}{}\paragraph*{{Description of the image}}\label{description_of_the_image} The following characterization of the [[image]] of the J-homomorphism on [[homotopy groups]] derives from a statement that was first conjectured in (\hyperlink{Adams66}{Adams 66}) -- and since called the \emph{[[Adams conjecture]]} -- and then proven in (\hyperlink{Quillen71}{Quillen 71}, \hyperlink{Sullivan74}{Sullivan 74}). \begin{remark} \label{}\hypertarget{}{} By the discussion at \emph{\href{orthogonal%20group#HomotopyGroups}{orthogonal group -- homotopy groups}} we have that the [[homotopy groups]] of the [[stable orthogonal group]] are \begin{tabular}{l|l|l|l|l|l|l|l|l} $n\;mod\; 8$&0&1&2&3&4&5&6&7\\ \hline $\pi_n(O)$&$\mathbb{Z}_2$&$\mathbb{Z}_2$&0&$\mathbb{Z}$&0&0&0&$\mathbb{Z}$\\ \end{tabular} Because all groups appearing here and in the following are [[cyclic groups]], we instead write down the [[order of a group|order]] \begin{tabular}{l|l|l|l|l|l|l|l|l} $n\;mod\; 8$&0&1&2&3&4&5&6&7\\ \hline ${\vert\pi_n(O)\vert}$&2&2&1&$\infty$&1&1&1&$\infty$\\ \end{tabular} \end{remark} For the following statement it is convenient to restrict to J-homomorphism to the stable [[special orthogonal group]] $S O$, which removes the lowest degree homotopy group in the above \begin{tabular}{l|l|l|l|l|l|l|l|l} $n\;mod\; 8$&0&1&2&3&4&5&6&7\\ \hline $\pi_n(S O)$&0&$\mathbb{Z}_2$&0&$\mathbb{Z}$&0&0&0&$\mathbb{Z}$\\ \end{tabular} \begin{tabular}{l|l|l|l|l|l|l|l|l} $n\;mod\; 8$&0&1&2&3&4&5&6&7\\ \hline ${\vert\pi_n(S O)\vert}$&1&2&1&$\infty$&1&1&1&$\infty$\\ \end{tabular} \begin{theorem} \label{AdamsQuillenTheorem}\hypertarget{AdamsQuillenTheorem}{} The [[stable homotopy groups of spheres]] $\pi_n(\mathbb{S})$ are the [[direct sum]] of the ([[cyclic group|cyclic]]) [[image]] $im(J|_{SO})$ of the J-homomorphism, def. \ref{JHom}, applied to the [[special orthogonal group]] and the [[kernel]] of the [[Adams e-invariant]]. Moreover, \begin{itemize}% \item for $n = 0 \;mod \;8$ and $n = 1 \;mod \; 8$ and $n$ positive the J-homomorphism $\pi_n(J) \colon \pi_n(S O) \to \pi_n(\mathbb{S})$ is [[injection|injective]], hence its image is $\mathbb{Z}_2$, \item for $n = 3\; mod\; 8$ and $n = 7 \; mod \; 8$ hence for $n = 4 k -1$, the [[order of a group|order]] of the image is equal to the [[denominator]] of $B_{2k}/4k$ in its reduced form, where $B_{2k}$ is the [[Bernoulli number]] \item for all other cases the image is necessarily zero. \end{itemize} \end{theorem} This characterization of the image of $J$ is due to (\hyperlink{Adams66}{Adams 66}, \hyperlink{Quillen71}{Quillen 71}, \hyperlink{Sullivan74}{Sullivan 74}). Specifically the identification of $J(\pi_{4n-1}(S O))$ is (\hyperlink{Adams65a}{Adams 65a, theorem 3.7} and the direct summand property is (\hyperlink{Adams66}{Adams 66, theorems 1.1-1.6.}). That the image is a direct summand of the codomain is proven for instance in (\hyperlink{Switzer75}{Switzer 75, end of chapter 19}). A modern version of the proof, using methods from [[chromatic homotopy theory]], is surveyed in some detail in (\hyperlink{Lorman13}{Lorman 13}). The statement of the theorem is recalled for instance as (\hyperlink{RavenelCh1}{Ravenel, chapter 1, theorem 1.1.13}). Another computation of the image of $J$ is in (\hyperlink{RavenelChapter5}{Ravenel, chapter 5, section 3}). \begin{remark} \label{}\hypertarget{}{} The order of $J(\pi_{4k-1} O)$ in theorem \ref{AdamsQuillenTheorem} is for low $k$ given by the following table \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l} k&1&2&3&4&5&6&7&8&9&10\\ \hline $\vert J(\pi_{4k-1}(O))\vert$&24&240&504&480&264&65,520&24&16,320&28,728&13,200\\ \end{tabular} \end{remark} See for instance (\hyperlink{RavenelCh1}{Ravenel, Chapt. 1, p. 5}). \begin{remark} \label{}\hypertarget{}{} Therefore we have in low degree the following situation [[!include image of J -- table]] \end{remark} The following tables show the [[p-primary components]] of the [[stable homotopy groups of spheres]] for low values, the image of J appears as the bottom row. Here the horizontal index is the degree $n$ of the stable homotopy group $\pi_n$. The appearance of a string of $k$ connected dots vertically above index $n$ means that there is a [[direct sum|direct summand]] [[primary group]] of [[order of a group|order]] $p^k$. See example \ref{InterpretTable} below for illustration. (The tables are taken from (\hyperlink{Hatcher}{Hatcher}), where in turn were they were generated based on (\hyperlink{RavenelCh1}{Ravenel 86}). \textbf{at $p = 2$} \textbf{at $p = 3$} \textbf{at $p = 5$} \begin{example} \label{InterpretTable}\hypertarget{InterpretTable}{} The [[finite abelian group]] $\pi_3(\mathbb{S}) \simeq \mathbb{Z}_{24}$ decomposes into [[primary groups]] as $\simeq \mathbb{Z}_8 \oplus \mathbb{Z}_3$. Here $8 = 2^3$ corresponds to the three dots above $n = 3$ in the first table, and $3 = 3^1$ to the single dot over $n = 3$ in the second. The [[finite abelian group]] $\pi_7(\mathbb{S}) \simeq \mathbb{Z}_{24}$ decomposes into [[primary groups]] as $\simeq \mathbb{Z}_{16} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5$. Here $16 = 2^4$ corresponds to the four dots above $n = 7$ in the first table, and $3 = 3^1$ to the single dot over $n = 7$ in the second and $5 = 5^1$ to the single dot over $n = 7$ in the third table. \end{example} \hypertarget{characterization_via_the_adams_operations}{}\paragraph*{{Characterization via the Adams operations}}\label{characterization_via_the_adams_operations} (\ldots{}) We indicate how the [[Adams conjecture]]/Adams-Quillen-Sullivan theorem serves to identify the image of the J-homomorphism. We follow the modern account as reviewed in (\hyperlink{Lorman13}{Lorman 13}). (\ldots{}) Write $\psi^k$ for the $k$th [[Adams operation]] on [[complex K-theory]]. Let $p$ be a [[prime]]. Consider $k$ coprime to $p$. The [[Adams conjecture]] implies that completed at $p$, the J-homomorphism factors through the [[homotopy fiber]] of $1 - \psi^k$. proof: We have a homotopy-commuting diagram \begin{displaymath} \itexarray{ B U_p &\stackrel{1 - \psi^k}{\longrightarrow}& B U_p \\ \downarrow &\swArrow_\simeq& \downarrow \\ \ast &\stackrel{0}{\longrightarrow}& B H_p } \,. \end{displaymath} The [[pasting]] composite with the [[homotopy pullback]] that witnesses the [[homotopy fiber]] of $1 - \psi^k$ induces via the [[universal property]] of the [[loop space object]] a canonical map $fib(1-\psi^k) \longrightarrow H_p$: \begin{displaymath} \itexarray{ fib(1-\psi^k) &\longrightarrow& \ast \\ \downarrow && \downarrow \\ B U_p &\stackrel{1 - \psi^k}{\longrightarrow}& B U_p \\ \downarrow &\swArrow_\simeq& \downarrow \\ \ast &\stackrel{0}{\longrightarrow}& B H_p } \;\;\; \simeq \;\;\; \itexarray{ fib(1-\psi^k) &\longrightarrow& \ast \\ \downarrow && \downarrow \\ H_p &\stackrel{}{\longrightarrow}& \ast \\ \downarrow &\swArrow_\simeq& \downarrow \\ \ast &\stackrel{0}{\longrightarrow}& B H_p } \,. \end{displaymath} (\ldots{}) \hypertarget{the_jspectrum}{}\paragraph*{{The J-spectrum}}\label{the_jspectrum} The [[J-spectrum]] is a [[spectrum]] whose [[homotopy groups]] are close to being the image of the J-homomorphism. (\ldots{}) \hypertarget{ImageOfJInChromotopy}{}\paragraph*{{Formulation in chromatic homotopy theory}}\label{ImageOfJInChromotopy} In terms of [[chromatic homotopy theory]] the nature of the image of the J-homomorphism can be formulated more succinctly as follows. Write $E(1)$ for the first [[Morava E-theory]] [[spectrum]] at given [[prime number]] $p$. Write $L_{E(1)}\mathbb{S}$ for the [[Bousfield localization of spectra]] of the [[sphere spectrum]] at $E(1)$. \begin{theorem} \label{}\hypertarget{}{} The [[homotopy groups]] of the $E(1)$-localized sphere spectrum are \begin{displaymath} \pi_n L_{E(1)} \mathbb{S} \simeq \left\{ \itexarray{ \mathbb{Z} & if\; n = 0 \\ \mathbb{Q}_p/\mathbb{Z}_p & if\; n= -2 \\ \mathbb{Z}/p^{k+1}\mathbb{Z} & if\; n+1 = 2(p-1)p^k m \;with\; m \neq 0\;mod\;p \\ 0 & otherwise } \right. \,. \end{displaymath} \end{theorem} This appears as (\hyperlink{Lurie}{Lurie 10, theorem 6}) (note that there are two typos: first, the theorem is stated with $L_{K(1)} \mathbb{S}$ rather than $L_{E(1)} \mathbb{S}$, and second, it should be $n+1 = 2(p-1)p^k m$ but the $2$ is missing.) \begin{defn} \label{}\hypertarget{}{} Write $\mathbb{S}_p$ for the [[p-localization]] of the [[sphere spectrum]]. For $n \in \mathbb{Z}$, write $im(J)_n$ for the [[image]] of the $p$-localized J-homomorphism \begin{displaymath} J \;\colon\; \pi_n(O) \longrightarrow \pi_n(\mathbb{S}) \longrightarrow \pi_n(\mathbb{S}_{(p)}) \,. \end{displaymath} \end{defn} \begin{theorem} \label{}\hypertarget{}{} For $n \in \mathbb{N}$, the further [[Bousfield localization]] at [[Morava E-theory|Morava E(1)-theory]] $\mathbb{S}_{(p)} \longrightarrow L_{E(1)}\mathbb{S}$ induces a [[isomorphism]] \begin{displaymath} im(J)_n \stackrel{\simeq}{\longrightarrow} \pi_n (L_{E(1)} \mathbb{S}) \end{displaymath} between the image of the $J$-homomorphism and the $E(1)$-local [[stable homotopy groups of spheres]]. \end{theorem} In this form this appears as (\hyperlink{Lurie}{Lurie 10, theorem 7}). See also (\hyperlink{Behrens13}{Behrens 13, section 1}). \begin{cor} \label{}\hypertarget{}{} The $E(1)$-[[Bousfield localization of spectra|localization map]] is surjective on non-negative homotopy groups: \begin{displaymath} \pi_n(\mathbb{S}_{(p)}) \longrightarrow \pi_n(L_{E(1)} \mathbb{S}) \,. \end{displaymath} \end{cor} For review see also (\hyperlink{Lorman13}{Lorman 13}). That $J$ factors through $L_{K(1)}\mathbb{S}$ is in (\hyperlink{Lorman13}{Lorman 13, p. 4}) \begin{remark} \label{}\hypertarget{}{} Hence: the image of $J$ is essentially the first [[chromatic layer]] of the [[sphere spectrum]]. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Thom spectra]], [[MO]] \item [[orientation in generalized cohomology]] \item [[J-homomorphism and chromatic homotopy]] \item [[scanning map equivalence]] \item [[twisted cohomotopy]] \end{itemize} $\backslash$linebreak \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The J-homomorphism was introduced in \begin{itemize}% \item [[George Whitehead]], \emph{On the homotopy groups of spheres and rotation groups}, Annals of Mathematics. Second Series 43 (4): 634--640 (1942), (\href{http://www.jstor.org/stable/1968956}{JSTOR}). \end{itemize} Lecture notes include \begin{itemize}% \item [[Akhil Mathew]], \emph{The Adams conjecture I} (\href{http://amathew.wordpress.com/2013/01/23/the-adams-conjecture-i/}{web}) \item [[Akhil Mathew]], \emph{Notes on the J-homomorphism}, 2012 (\href{http://math.uchicago.edu/~amathew/j.pdf}{pdf}, [[MathewJHomomorphism.pdf:file]]) \item Arpon Raksit, \emph{Vector fields and the J-homomorphism}, 2014 (\href{http://stanford.edu/~arpon/math/files/vfields.pdf}{pdf}) \end{itemize} Discussion in [[higher algebra]] in term of [[(∞,1)-module bundles]] is in \begin{itemize}% \item [[Matthew Ando]], [[Andrew Blumberg]], [[David Gepner]], \emph{Twists of K-theory and TMF} (\href{http://arxiv.org/abs/1002.3004}{arXiv:1002.3004}) \end{itemize} The [[complex geometry|complex]] J-homomorphism is discussed in \begin{itemize}% \item [[Victor Snaith]], \emph{The complex J-homomorphism}, Proc. London Math. Soc. (1977) s3-34 (2): 269-302 (\href{http://plms.oxfordjournals.org/content/s3-34/2/269.full.pdf+html}{journal}) \item [[Victor Snaith]], \emph{Infinite loop maps and the complex $J$-homomorphism}, Bull. Amer. Math. Soc. Volume 82, Number 3 (1976), 508-510. (\href{http://projecteuclid.org/euclid.bams/1183537922}{Euclid}) \end{itemize} A [[p-adic number|p-adic]] J-homomorphism is described in \begin{itemize}% \item Dustin Clausen, \emph{p-adic J-homomorphisms and a product formula} (\href{http://arxiv.org/abs/1110.5851}{arXiv:1110.5851}) \end{itemize} \hypertarget{the_image_of_j}{}\subsubsection*{{The image of J}}\label{the_image_of_j} The analysis of the image of $J$ is due to \begin{itemize}% \item [[John Adams]], \emph{On the groups $J(X)$ I}, Topology 2 (3) (1963) (\href{http://math1.unice.fr/~cazanave/Gdt/ImJ/J-I.pdf}{pdf}) \item [[John Adams]], \emph{On the groups $J(X)$ II}, Topology 3 (2) (1965) (\href{http://math1.unice.fr/~cazanave/Gdt/ImJ/J-II.pdf}{pdf}) \item [[John Adams]], \emph{On the groups $J(X)$ III}, Topology 3 (3) (1965) (\href{http://math1.unice.fr/~cazanave/Gdt/ImJ/J-III.pdf}{pdf}) \item [[John Adams]], \emph{On the groups $J(X)$ IV}, Topology 5: 21,(1966) \emph{Correction}, Topology 7 (3): 331 (1968) (\href{http://math.unice.fr/~cazanave/Gdt/ImJ/J-IV.pdf}{pdf}) \item [[Daniel Quillen]], \emph{The Adams conjecture}, Topology. an International Journal of Mathematics 10: 67--80 (1971) (\href{http://math1.unice.fr/~cazanave/Gdt/ImJ/Quillen.pdf}{pdf}) \item [[Dennis Sullivan]], \emph{Genetics of homotopy theory and the Adams conjecture}, Ann. of Math. 100 (1974), 1--79. \item [[Robert Switzer]], \emph{Algebraic topology--homotopy and homology}, Springer-Verlag, New York, 1975. \end{itemize} The statement of the theorem about the characterization of the image is reviewed in \begin{itemize}% \item [[Doug Ravenel]], \emph{[[Complex cobordism and stable homotopy groups of spheres]]}, chapter 1, \emph{An introduction to the homotopy groups of spheres} (\href{http://www.math.rochester.edu/people/faculty/doug/mybooks/ravenel1.pdf}{pdf}) \end{itemize} see there also around theorem 3.4.16. The details of the proof are surveyed in \begin{itemize}% \item [[Doug Ravenel]], \emph{[[Complex cobordism and stable homotopy groups of spheres]]}, chapter 5, \emph{The chromatic spectral sequence} (\href{http://www.math.rochester.edu/people/faculty/doug/mybooks/ravenel5.pdf}{pdf}) \end{itemize} Tables showing the image of $J$ at low primes are in \begin{itemize}% \item [[Allen Hatcher]], \emph{Stable homotopy groups of spheres} (\href{http://www.math.cornell.edu/~hatcher/stemfigs/stems.html}{html}) \end{itemize} Other reviews include \begin{itemize}% \item [[Mark Mahowald]], \emph{The Image of J in the EHP Sequence}, Annals of Mathematics Second Series, Vol. 116, No. (\href{http://www.jstor.org/stable/2007048}{JSTOR}) \item [[Johannes Ebert]], \emph{The Adams conjecture after Edgar Brown}, (\href{http://www.math.uni-muenster.de/u/jeber_02/talks/adams.pdf}{pdf}) \end{itemize} Discussion from the point of view of [[chromatic homotopy theory]] is in \begin{itemize}% \item [[Jacob Lurie]], \emph{The image of $J$}, lecture 35 in \emph{[[Chromatic Homotopy Theory]]} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture35.pdf}{pdf}) \item [[Mark Behrens]], section 1 of Introduction talk at \emph{\href{http://math.mit.edu/conferences/talbot/index.php?year=2013&sub=talks}{Talbot 2013: Chromatic Homotopy Theory}} (\href{http://math.mit.edu/conferences/talbot/2013/1-Behrens-intro.pdf}{pdf}, \href{http://math.mit.edu/conferences/talbot/2013/Behrens-Introduction-chromatic-homotopy-thy-4-22-13.pdf}{pdf}) \item [[Ben Knudsen]], \emph{First chromatic layer of the sphere spectrum = homotopy of the $K(1)$-local sphere}, talk at \emph{\href{http://math.northwestern.edu/~htanaka/pretalbot2013/index.php}{2013 Pre-Talbot Seminar}} (\href{http://math.northwestern.edu/~htanaka/pretalbot2013/notes/2013-04-04-Rob-Legg-K1-local-sphere.pdf}{pdf}) \item [[Vitaly Lorman]], \emph{Chromatic homotopy theory at height 1 and the image of $J$}, talk at \emph{\href{http://math.mit.edu/conferences/talbot/index.php?year=2013&sub=talks}{Talbot 2013: Chromatic Homotopy Theory}} (\href{http://math.mit.edu/conferences/talbot/2013/Image%20of%20J-1.pdf}{pdf}) \end{itemize} Generalization to [[equivariant cohomology]] ([[equivariant K-theory]]) is discussed in \begin{itemize}% \item Z. Fiedorowicz, H. Hauschild, [[Peter May]], theorem 0.4 of \emph{Equivariant algebraic K-theory}, \emph{Equivariant algebraic K-theory}, Algebraic K-Theory. Springer, Berlin, Heidelberg, 1982. 23-80 (\href{http://math.uchicago.edu/~may/PAPERS/40.pdf}{pdf}) \item Henning Hauschild, [[Stefan Waner]], theorem 0.1 of \emph{The equivariant Dold theorem mod $k$ and the Adams conjecture}, Illinois J. Math. Volume 27, Issue 1 (1983), 52-66. (\href{https://projecteuclid.org/euclid.ijm/1256065410}{euclid:1256065410}) \item Kuzuhisa Shimakawa, \emph{Note on the equivariant $K$-theory spectrum}, Publ. RIMS, Kyoto Univ. \textbf{29} (1993), 449-453 (\href{http://www.ems-ph.org/journals/show_pdf.php?issn=0034-5318&vol=29&iss=3&rank=5}{pdf}, \href{https://doi.org/10.2977/prims/1195167052}{doi}) \item Christopher French, theorem 2.4 in \emph{The equivariant $J$–homomorphism for finite groups at certain primes}, Algebr. Geom. Topol. Volume 9, Number 4 (2009), 1885-1949 (\href{https://projecteuclid.org/euclid.agt/1513797069}{euclid:1513797069}) \end{itemize} \hypertarget{equivariant_enhancement}{}\subsubsection*{{Equivariant enhancement}}\label{equivariant_enhancement} The generalization to [[equivariant cohomology]] ([[equivariant K-theory]] and the [[equivariant Adams conjecture]]) is discussed in \begin{itemize}% \item [[Tammo tom Dieck]], theorem 11.3.8 in \emph{[[Transformation Groups and Representation Theory]]} Lecture Notes in Mathematics 766 Springer 1979 \item Z. Fiedorowicz, H. Hauschild, [[Peter May]], theorem 0.4 of \emph{Equivariant algebraic K-theory}, \emph{Equivariant algebraic K-theory}, Algebraic K-Theory. Springer, Berlin, Heidelberg, 1982. 23-80 (\href{http://math.uchicago.edu/~may/PAPERS/40.pdf}{pdf}) \item Henning Hauschild, [[Stefan Waner]], theorem 0.1 of \emph{The equivariant Dold theorem mod $k$ and the Adams conjecture}, Illinois J. Math. Volume 27, Issue 1 (1983), 52-66. (\href{https://projecteuclid.org/euclid.ijm/1256065410}{euclid:1256065410}) \item Kuzuhisa Shimakawa, \emph{Note on the equivariant $K$-theory spectrum}, Publ. RIMS, Kyoto Univ. \textbf{29} (1993), 449-453 (\href{http://www.ems-ph.org/journals/show_pdf.php?issn=0034-5318&vol=29&iss=3&rank=5}{pdf}, \href{https://doi.org/10.2977/prims/1195167052}{doi}) \item Christopher French, theorem 2.4 in \emph{The equivariant $J$–homomorphism for finite groups at certain primes}, Algebr. Geom. Topol. Volume 9, Number 4 (2009), 1885-1949 (\href{https://projecteuclid.org/euclid.agt/1513797069}{euclid:1513797069}) \end{itemize} \hypertarget{relation_to_action_on_general_spectra}{}\subsubsection*{{Relation to $O$-action on general spectra}}\label{relation_to_action_on_general_spectra} Similarly there is a canonical $O(n)$-[[∞-action]] on an [[n-fold loop space]], not just on the [[sphere spectrum]]. But the general case is closely related to the J-homomorphism. Discussion includes \begin{itemize}% \item Gerald Gaudens, [[Luc Menichi]], section 5 of \emph{Batalin-Vilkovisky algebras and the $J$-homomorphism}, Topology and its Applications Volume 156, Issue 2, 1 December 2008, Pages 365--374 (\href{http://arxiv.org/abs/0707.3103}{arXiv:0707.3103}) \end{itemize} and in the context of the [[cobordism hypothesis]]: \begin{itemize}% \item [[Jacob Lurie]], example 2.4.15 of \emph{[[On the Classification of Topological Field Theories]]}, Current Developments in Mathematics Volume 2008 (2009), 129-280 (\href{http://arxiv.org/abs/0905.0465}{arXiv:0905.0465}) \end{itemize} [[!redirects J-homomorphisms]] [[!redirects image of J]] [[!redirects image of J-homomorphism]] [[!redirects image of the J-homomorphism]] [[!redirects equivariant J-homomorphism]] [[!redirects equivariant J-homomorphisms]] \end{document}