\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{J-homomorphism and chromatic homotopy} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \begin{quote}% This entry explains the [[J-homomorphism]], states how its image is the first ([[chromatic layer|chromatic]]) layer of the [[sphere spectrum]]; and then motivated by this explains some basic notions of [[chromatic homotopy theory]], notably the origin of the general $E$-[[Adams spectral sequence]]. \end{quote} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{i_the_jhomomorphism}{\textbf{I)} The J-homomorphism}\dotfill \pageref*{i_the_jhomomorphism} \linebreak \noindent\hyperlink{OnGroups}{On groups}\dotfill \pageref*{OnGroups} \linebreak \noindent\hyperlink{on_classifying_spaces}{On classifying spaces}\dotfill \pageref*{on_classifying_spaces} \linebreak \noindent\hyperlink{ii_the_image_of_the_jhomomorphism}{\textbf{II)} The image of the J-homomorphism}\dotfill \pageref*{ii_the_image_of_the_jhomomorphism} \linebreak \noindent\hyperlink{explicit_description}{Explicit description}\dotfill \pageref*{explicit_description} \linebreak \noindent\hyperlink{chromatic_formulation}{Chromatic formulation}\dotfill \pageref*{chromatic_formulation} \linebreak \noindent\hyperlink{ELocalStableHomotopyTheory}{\textbf{III)} $E$-Local stable homotopy theory}\dotfill \pageref*{ELocalStableHomotopyTheory} \linebreak \noindent\hyperlink{bousfield_localization_of_spectra}{Bousfield localization of spectra}\dotfill \pageref*{bousfield_localization_of_spectra} \linebreak \noindent\hyperlink{chromatic_layers}{Chromatic layers}\dotfill \pageref*{chromatic_layers} \linebreak \noindent\hyperlink{iv_adams_spectral_sequence_for_local_homotopy_groups}{\textbf{IV)} Adams spectral sequence for $E$-local homotopy groups}\dotfill \pageref*{iv_adams_spectral_sequence_for_local_homotopy_groups} \linebreak \noindent\hyperlink{SpectralSequencesForHomotopyGroupsOfFilteredObjects}{Spectral sequences for homotopy groups of filtered spectra}\dotfill \pageref*{SpectralSequencesForHomotopyGroupsOfFilteredObjects} \linebreak \noindent\hyperlink{CanonicalCosimplicialResolutionOfEInfinityAlgebras}{Canonical cosimplicial resolution of $E_\infty$-algebras}\dotfill \pageref*{CanonicalCosimplicialResolutionOfEInfinityAlgebras} \linebreak \noindent\hyperlink{TheEAdamsSpectralSequence}{The $E$-Adams-Novikov spectral sequence}\dotfill \pageref*{TheEAdamsSpectralSequence} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{i_the_jhomomorphism}{}\subsection*{{\textbf{I)} The J-homomorphism}}\label{i_the_jhomomorphism} The \emph{[[J-homomorphism]]} is a map from the [[homotopy groups]] of the [[stable orthogonal group]] (which are completely understood) to the [[stable homotopy groups of spheres]] (which in their totality are hard to compute). \hypertarget{OnGroups}{}\subsubsection*{{On groups}}\label{OnGroups} \begin{defn} \label{SphereAsCompactification}\hypertarget{SphereAsCompactification}{} For $n \in \mathbb{N}$ regard the $n$-[[sphere]] (as a [[topological space]]) as the [[one-point compactification]] of the [[Cartesian space]] $\mathbb{R}^n$ \begin{displaymath} S^n \simeq (\mathbb{R}^n)^\ast \,. \end{displaymath} \end{defn} \begin{remark} \label{ActionOfOrthogonalOnSphere}\hypertarget{ActionOfOrthogonalOnSphere}{} Since the process of [[one-point compactification]] is a [[functor]] on [[proper maps]], hence on [[homeomorphisms]], via def. \ref{SphereAsCompactification} the $n$-sphere inherits from the canonical [[action]] of the [[orthogonal group]] $O(n)$ on $\mathbb{R}^n$ an [[action]] \begin{displaymath} O(n) \times S^n \longrightarrow S^n \end{displaymath} (by [[continuous maps]]) which preserves the base point (the ``point at infinity''). \end{remark} For definiteness we distinguish in the following notationally between \begin{enumerate}% \item the $n$-[[sphere]] $S^n \in Top$ regarded as a [[topological space]]; \item its [[homotopy type]] $\Pi(S^n) \in L_{whe} Top \simeq$ [[∞Grpd]] given by its [[fundamental ∞-groupoid]]. \end{enumerate} Similarly we write $\Pi(O(n))$ for the [[homotopy type]] of the [[orthogonal group]], regarded as a [[group object in an (∞,1)-category]] in [[∞Grpd]] (using that the [[shape modality]] $\Pi$ preserves [[finite products]]). \begin{defn} \label{AutoequivalencesOfnSphere}\hypertarget{AutoequivalencesOfnSphere}{} For $n \in \mathbb{N}$ write $H(n)$ for the [[automorphism ∞-group]] of homotopy self-equivalences $S^n \longrightarrow S^n$, hence \begin{displaymath} H(n) \coloneqq Aut_{\infty Grpd^{\ast/}}(\Pi(S^n)) \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} The [[∞-group]] $H(n)$, def. \ref{AutoequivalencesOfnSphere}, constitutes the two [[connected components]] of the $n$-fold based [[loop space]] $\Omega^n S^n$ corresponding to the [[homotopy groups]] $\pm 1 \in \pi_n(S^n)$. \end{remark} \begin{defn} \label{OrthogonalActionOnSphereOnHomotopyGroups}\hypertarget{OrthogonalActionOnSphereOnHomotopyGroups}{} Via the presentation of [[∞Grpd]] by the [[cartesian closed model structure|cartesian closed]] [[model structure on topological spaces|model structure on compactly generated topological spaces]] (and using that $S^n$ and $O(n)$ and hence their product are [[compact topological spaces|compact]]) we have that for $n \in \mathbb{N}$ the [[continuous function|continuous]] [[action]] of $O(n)$ on $S^n$ of remark \ref{ActionOfOrthogonalOnSphere}, which by [[cartesian closed category|cartesian closure]] is equivalently a homomorphism of [[topological groups]] of the form \begin{displaymath} O(n) \longrightarrow Aut_{Top^{\ast/}}(S^n) \,, \end{displaymath} induces a homomorphism of [[∞-groups]] of the form \begin{displaymath} \Pi(O(n)) \longrightarrow Aut_{\infty Grpd^{\ast/}}(\Pi(S^n)) \,. \end{displaymath} This in turn induces for each $i \in \mathbb{N}$ homomorphisms of [[homotopy groups]] of the form \begin{displaymath} \pi_i(O(n)) \longrightarrow \pi_i(\Omega^n S^n) \simeq \pi_{n+i}(S^n) \,. \end{displaymath} \end{defn} \begin{remark} \label{OrthogonalActionOnSphereOnHomotopyGroups}\hypertarget{OrthogonalActionOnSphereOnHomotopyGroups}{} By construction, the homomorphisms of remark \ref{OrthogonalActionOnSphereOnHomotopyGroups} are compatible with [[suspension]] in that for all $n \in \mathbb{N}$ the [[diagrams]] \begin{displaymath} \itexarray{ O(n) &\longrightarrow& Aut_{Top^{\ast/}}(S^n) \\ \downarrow && \downarrow \\ O(n+1) &\longrightarrow& Aut_{Top^{\ast/}}(S^{n+1}) } \end{displaymath} in $Grp(Top)$ commute, and hence so do the diagrams \begin{displaymath} \itexarray{ \Pi(O(n)) &\longrightarrow& Aut_{\infty Grpd^{\ast/}}(\Pi(S^n)) \\ \downarrow && \downarrow \\ \Pi(O(n+1)) &\longrightarrow& Aut_{\infty Grpd^{\ast/}}(\Pi(S^{n+1})) } \end{displaymath} in $Grp(\infty Grpd)$, up to [[homotopy]]. \end{remark} Therefore one can take the [[direct limit]] over $n$: \begin{defn} \label{JHom}\hypertarget{JHom}{} By remark \ref{OrthogonalActionOnSphereOnHomotopyGroups} there is induced a homomorphism \begin{displaymath} J_i \;\colon\; \pi_\bullet(O) \longrightarrow \pi_\bullet(\mathbb{S}) \end{displaymath} from the [[homotopy groups]] of the [[stable orthogonal group]] to the [[stable homotopy groups of spheres]]. This is called the \textbf{[[J-homomorphism]]}. \end{defn} \hypertarget{on_classifying_spaces}{}\subsubsection*{{On classifying spaces}}\label{on_classifying_spaces} \begin{remark} \label{DeloopedJ}\hypertarget{DeloopedJ}{} Since the maps of def. \ref{OrthogonalActionOnSphereOnHomotopyGroups} are [[∞-group]] [[homomorphisms]], there exists their [[delooping]] \begin{displaymath} B J \;\colon\; B O \longrightarrow B GL_1(\mathbb{S}) = B H \,. \end{displaymath} \end{remark} \begin{remark} \label{}\hypertarget{}{} Here $GL_1(\mathbb{S})$ is the [[∞-group of units]] of the [[sphere spectrum]]. \end{remark} This map $B J$ is the [[universal characteristic class]] of stable [[vector bundles]] with values in [[spherical fibrations]]: \begin{defn} \label{SphereBundleOfVectorBundle}\hypertarget{SphereBundleOfVectorBundle}{} For $V \to X$ a [[vector bundle]], write $S^V$ for its [[fiber]]-wise [[one-point compactification]]. This is a [[sphere bundle]], a [[spherical fibration]]. Write $\mathbb{S}^V$ for the $X$-[[parameterized spectrum]] which is fiberwise the [[suspension spectrum]] of $S^V$. \end{defn} It is immediate that: \begin{prop} \label{}\hypertarget{}{} For $V \to X$ a [[vector bundle]] classified by a map $X \to B O$, the corresponding [[spherical fibration]] $\mathbb{S}^V$, def. \ref{SphereBundleOfVectorBundle}, is classified by $X \to B O \stackrel{B J}{\longrightarrow} B GL_1(\mathbb{S})$, def. \ref{DeloopedJ}. \end{prop} \hypertarget{ii_the_image_of_the_jhomomorphism}{}\subsection*{{\textbf{II)} The image of the J-homomorphism}}\label{ii_the_image_of_the_jhomomorphism} Since the [[J-homomorphism]] maps from something well-understood to something hard to understand, it is of interst to characterize its [[image]], ``the [[image of J]]''. \hypertarget{explicit_description}{}\subsubsection*{{Explicit description}}\label{explicit_description} The following characterization of the [[image]] of the J-homomorphism on [[homotopy groups]] derives from a statement that was first conjectured in (\href{Adams+spectrals+sequence#Adams66}{Adams 66}) -- and since called the \emph{[[Adams conjecture]]} -- and then proven in (\href{Adams+spectrals+sequence#Quillen71}{Quillen 71}, \href{Adams+spectrals+sequence#Sullivan74}{Sullivan 74}). \begin{remark} \label{}\hypertarget{}{} By the discussion at \emph{\href{orthogonal%20group#HomotopyGroups}{orthogonal group -- homotopy groups}} we have that the [[homotopy groups]] of the [[stable orthogonal group]] are \begin{tabular}{l|l|l|l|l|l|l|l|l} $n\;mod\; 8$&0&1&2&3&4&5&6&7\\ \hline $\pi_n(O)$&$\mathbb{Z}_2$&$\mathbb{Z}_2$&0&$\mathbb{Z}$&0&0&0&$\mathbb{Z}$\\ \end{tabular} Because all groups appearing here and in the following are [[cyclic groups]], we instead write down the [[order of a group|order]] \begin{tabular}{l|l|l|l|l|l|l|l|l} $n\;mod\; 8$&0&1&2&3&4&5&6&7\\ \hline ${\vert\pi_n(O)\vert}$&2&2&1&$\infty$&1&1&1&$\infty$\\ \end{tabular} \end{remark} For the following statement it is convenient to restrict to J-homomorphism to the stable [[special orthogonal group]] $S O$, which removes the lowest degree homotopy group in the above \begin{tabular}{l|l|l|l|l|l|l|l|l} $n\;mod\; 8$&0&1&2&3&4&5&6&7\\ \hline $\pi_n(S O)$&0&$\mathbb{Z}_2$&0&$\mathbb{Z}$&0&0&0&$\mathbb{Z}$\\ \end{tabular} \begin{tabular}{l|l|l|l|l|l|l|l|l} $n\;mod\; 8$&0&1&2&3&4&5&6&7\\ \hline ${\vert\pi_n(S O)\vert}$&1&2&1&$\infty$&1&1&1&$\infty$\\ \end{tabular} \begin{theorem} \label{AdamsQuillenTheorem}\hypertarget{AdamsQuillenTheorem}{} The [[stable homotopy groups of spheres]] $\pi_n(\mathbb{S})$ are the [[direct sum]] of the ([[cyclic group|cyclic]]) [[image]] $im(J|_{SO})$ of the J-homomorphism, def. \ref{JHom}, applied to the [[special orthogonal group]] and the [[kernel]] of the [[Adams e-invariant]]. Moreover, \begin{itemize}% \item for $n = 0 \;mod \;$ and $n = 1 \;mod \; 8$ and $n$ positive the J-homomorphism $\pi_n(J) \colon \pi_n(S O) \to \pi_n(\mathbb{S})$ is [[injection|injective]], hence its image is $\mathbb{Z}_2$, \item for $n = 3\; mod\; 8$ and $n = 7 \; mod \; 8$ hence for $n = 4 k -1$, the [[order of a group|order]] of the image is equal to the [[denominator]] of $B_{2k}/4k$ in its reduced form, where $B_{2k}$ is the [[Bernoulli number]] \item for all other cases the image is necessarily zero. \end{itemize} \end{theorem} The characterization of this image is due to (\href{Adams+spectrals+sequence#Adams66}{Adams 66}, \href{Adams+spectrals+sequence#Quillen71}{Quillen 71}, \href{Adams+spectrals+sequence#Sullivan74}{Sullivan 74}). Specifically the identification of $J(\pi_{4n-1}(S O))$ is (\href{Adams+spectrals+sequence#Adams65a}{Adams 65a, theorem 3.7} and the direct summand property is (\href{Adams+spectrals+sequence#Adams66}{Adams 66, theorems 1.1-1.6.}). That the image is a direct summand of the codomain is proven for instance in (\href{Adams+spectrals+sequence#Switzer75}{Switzer 75, end of chapter 19}). A modern version of the proof, using methods from [[chromatic homotopy theory]], is surveyed in some detail in (\hyperlink{Lorman13}{Lorman 13}). The statement of the theorem is recalled for instance as (\hyperlink{Ravenel}{Ravenel, chapter 1, theorem 1.1.13}). Another computation of the image of $J$ is in (\hyperlink{Ravenel}{Ravenel, chapter 5, section 3}). \begin{remark} \label{}\hypertarget{}{} The order of $J(\pi_{4k-1} O)$ in theorem \ref{AdamsQuillenTheorem} is for low $k$ given by the following table \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l} k&1&2&3&4&5&6&7&8&9&10\\ \hline $\vert J(\pi_{4k-1}(O))\vert$&24&240&504&480&264&65,520&24&16,320&28,728&13,200\\ \end{tabular} \end{remark} See for instance (\hyperlink{Ravenel}{Ravenel, Chapt. 1, p. 5}). \begin{remark} \label{}\hypertarget{}{} Therefore we have in low degree the following situation [[!include image of J -- table]] \end{remark} \begin{example} \label{TableOfPPrincipalComponentsInHomotopyGroups}\hypertarget{TableOfPPrincipalComponentsInHomotopyGroups}{} The following tables show the [[p-primary components]] of the [[stable homotopy groups of spheres]] for low values, the image of J appears as the bottom row. Here the horizontal index is the degree $n$ of the stable homotopy group $\pi_n$. The appearance of a string of $k$ connected dots vertically above index $n$ means that there is a [[direct sum|direct summand]] [[primary group]] of [[order of a group|order]] $p^k$. See example \ref{InterpretTable} below for illustration. (These tables are taken from (\href{homotopy+groups+of+spheres#Hatcher}{Hatcher}), where in turn they were generated based on (\hyperlink{Ravenel}{Ravenel 86})). \textbf{$p = 2$-primary component} (e.g. \hyperlink{Ravenel}{Ravenel 86, theorem 3.2.11, figure 4.4.46}) \textbf{$p = 3$-primary component} \textbf{$p = 5$-primary component} \end{example} We illustrate how to read these tables: \begin{example} \label{InterpretTable}\hypertarget{InterpretTable}{} The [[finite abelian group]] $\pi_3(\mathbb{S}) \simeq \mathbb{Z}_{24}$ decomposes into [[primary groups]] as $\simeq \mathbb{Z}_8 \oplus \mathbb{Z}_3$. Here $8 = 2^3$ corresponds to the three dots above $n = 3$ in the first table, and $3 = 3^1$ to the single dot over $n = 3$ in the second. The [[finite abelian group]] $\pi_7(\mathbb{S}) \simeq \mathbb{Z}_{240}$ decomposes into [[primary groups]] as $\simeq \mathbb{Z}_{16} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5$. Here $16 = 2^4$ corresponds to the four dots above $n = 7$ in the first table, and $3 = 3^1$ to the single dot over $n = 7$ in the second and $5 = 5^1$ to the single dot over $n = 7$ in the third table. The [[finite abelian group]] $\pi_11(\mathbb{S}) \simeq \mathbb{Z}_{504}$ has [[primary group]]-decomposition $\cdots \simeq \mathbb{Z}_{2^3} \oplus \mathbb{Z}_{3^2} \oplus \mathbb{Z}_7$ and so this corresponds to the three connected dots over $n = 11$ in the first table and the two connected dots over $n = 11$ in the second (and there will be one dot over $n = 11$ in the fourth table for $p = 7$ not shown here). The groups $\pi_1(\mathbb{S}) \simeq \pi_2(\mathbb{S}) \simeq \pi_6(\mathbb{S}) \simeq \pi_{10}(\mathbb{S}) \simeq \mathbb{Z}_2$ correspond to the single dots over $n = 1,2,6,10$ in the first table, respectively. The group $\pi_8(\mathbb{S}) \simeq \mathbb{Z}_2 \oplus \mathbb{Z}_2$ corresponds to the two \emph{unconnected} dots over $n = 8$ in the first table. Similarly the group $\pi_9(\mathbb{S}) \simeq \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ corresponds to the three unconnected dots above $n = 9$ in the first table. \end{example} \hypertarget{chromatic_formulation}{}\subsubsection*{{Chromatic formulation}}\label{chromatic_formulation} The above tables, example \ref{TableOfPPrincipalComponentsInHomotopyGroups}, suggest that the [[image of the J-homomorphism]] is in some sense the ``lowest order layer'' of the [[stable homotopy groups of spheres]]. This is made precise by the following characterization of the image in [[stable homotopy theory]]. We bluntly state this here and give all the relevant definitions \hyperlink{ELocalStableHomotopyTheory}{below}. $\,$ Write $E(1)$ for the first [[Morava E-theory]] [[spectrum]] at given [[prime number]] $p$. Write $L_{E(1)}\mathbb{S}$ for the [[Bousfield localization of spectra]] of the [[sphere spectrum]] at $E(1)$. \begin{theorem} \label{}\hypertarget{}{} The [[homotopy groups]] of the $E(1)$-localized sphere spectrum are \begin{displaymath} \pi_n L_{E(1)} \mathbb{S} \simeq \left\{ \itexarray{ \mathbb{Z} & if\; n = 0 \\ \mathbb{Q}_p/\mathbb{Z}_p & if\; n= -2 \\ \mathbb{Z}_{p^{k+1}} & if\; n+1 = (p-1)p^k m \;with\; m \neq 0\;mod\;p \\ 0 & otherwise } \right. \,. \end{displaymath} \end{theorem} This appears as (\hyperlink{LurieLecture}{Lurie 10, theorem 6}) \begin{defn} \label{}\hypertarget{}{} Write $\mathbb{S}_p$ for the [[p-localization]] of the [[sphere spectrum]]. For $n \in \mathbb{Z}$, write $im(J)_n$ for the [[image]] of the $p$-localized J-homomorphism \begin{displaymath} J \;\colon\; \pi_n(O) \longrightarrow \pi_n(\mathbb{S}) \longrightarrow \pi_n(\mathbb{S}_{(p)}) \,. \end{displaymath} \end{defn} \begin{theorem} \label{}\hypertarget{}{} For $n \in \mathbb{N}$, the further [[Bousfield localization]] at [[Morava E-theory|Morava E(1)-theory]] $\mathbb{S}_{(p)} \longrightarrow L_{E(1)}\mathbb{S}$ induces a [[isomorphism]] \begin{displaymath} im(J)_n \stackrel{\simeq}{\longrightarrow} \pi_n (L_{E(1)} \mathbb{S}) \end{displaymath} between the image of the $J$-homomorphism and the $E(1)$-local [[stable homotopy groups of spheres]]. \end{theorem} In this form this appears as (\hyperlink{LurieLecture}{Lurie 10, theorem 7}). See also (\hyperlink{Behrens13}{Behrens 13, section 1}). \begin{cor} \label{}\hypertarget{}{} The $E(1)$-[[Bousfield localization of spectra|localization map]] is surjective on non-negative homotopy groups: \begin{displaymath} \pi_n(\mathbb{S}_{(p)}) \longrightarrow \pi_n(L_{E(1)} \mathbb{S}) \,. \end{displaymath} \end{cor} For review see also (\hyperlink{Lorman13}{Lorman 13}). That $J$ factors through $L_{K(1)}\mathbb{S}$ is in (\hyperlink{Lorman13}{Lorman 13, p. 4}) \begin{remark} \label{}\hypertarget{}{} Hence: the image of $J$ is essentially the first [[chromatic layer]] of the [[sphere spectrum]]. \end{remark} \hypertarget{ELocalStableHomotopyTheory}{}\subsection*{{\textbf{III)} $E$-Local stable homotopy theory}}\label{ELocalStableHomotopyTheory} To say what all this means, we recall now [[Bousfield localization of spectra]] and then indicate the tower of localizations at the [[Morava E-theory]] spectra, the ``[[chromatic filtration]]''. \hypertarget{bousfield_localization_of_spectra}{}\subsubsection*{{Bousfield localization of spectra}}\label{bousfield_localization_of_spectra} \begin{defn} \label{AcyclicAndLocal}\hypertarget{AcyclicAndLocal}{} Let $E \in Spec$ be a [[spectrum]]. Say that another spectrum $X \in Spec$ is an \textbf{$E$-acyclic spectrum} if the [[smash product]] is [[zero object|zero]], $E \wedge X \simeq 0$. Say that $X$ is an \textbf{$E$-local spectrum} if every [[morphism]] $Y \longrightarrow X$ out of an $E$-acyclic spectrum $Y$ is homotopic to the [[zero morphism]]. Say that a morphism $f \colon X \to Y$ is an \textbf{$E$-equivalence} if it becomes an [[equivalence]] after [[smash product]] with $E$. \end{defn} (e.g. \hyperlink{LurieLecture}{Lurie, Lecture 20, example 4}) \begin{prop} \label{LocalizationCofiber}\hypertarget{LocalizationCofiber}{} For $E$ a [[spectrum]], every other spectrum sits in an essentially unique [[homotopy cofiber sequence]] \begin{displaymath} G_E(X) \to X \to L_E(X) \,, \end{displaymath} where $G_E(X)$ is $E$-acyclic, and $L_E(X)$ is $E$-local, def. \ref{AcyclicAndLocal}. Here $X \to L_E (X)$ is characterized by two properties \begin{enumerate}% \item $L_E(X)$ is $E$-local; \item $X \to L_E(X)$ is an $E$-equivalence \end{enumerate} according to def. \ref{AcyclicAndLocal}. \end{prop} (e.g. \hyperlink{LurieLecture}{Lurie, Lecture 20, example 4}) \begin{defn} \label{}\hypertarget{}{} Given $E \in Spec$, the [[natural transformation|natural morphisms]] $X \longrightarrow L_E X$ in prop. \ref{LocalizationCofiber} exhibit the [[localization of an (infinity,1)-category]] called \textbf{Bousfield localization} at $E$. \end{defn} \begin{example} \label{EModulesAreELocal}\hypertarget{EModulesAreELocal}{} For $E$ an [[E-∞ ring]], every [[∞-module]] $X$ over $E$ is $E$-local, def. \ref{AcyclicAndLocal}. \end{example} (e.g. \hyperlink{LurieLecture}{Lurie, Lecture 20, example 5}) \begin{example} \label{}\hypertarget{}{} For $E$ an [[E-∞ algebra]] over an [[E-∞ ring]] $S$ and for $X$ an $S$-[[∞-module]], consider the dual [[Cech nerve]] [[cosimplicial object]] \begin{displaymath} E^{\wedge_S^{\bullet+1}}\wedge_S X \;\colon\; \Delta \longrightarrow Spectra \,. \end{displaymath} By example \ref{EModulesAreELocal} each term is $E$-local, so that the map to the [[totalization]] \begin{displaymath} X \longrightarrow \underset{\leftarrow}{\lim} E^{\wedge_S^{\bullet+1}} \wedge_S X \end{displaymath} factors through the $E$-localization of $X$ \begin{displaymath} X \longrightarrow L_E X \longrightarrow \underset{\leftarrow}{\lim} E^{\wedge_S^{\bullet+1}} \wedge_S X \,. \end{displaymath} Under suitable condition the second map here is indeed an [[equivalence]], in which case the [[totalization]] of the dual [[Cech nerve]] exhibits the $E$-localization. This happens for instance in the discussion of the [[Adams spectral sequence]], see the examples given there. \end{example} \begin{example} \label{}\hypertarget{}{} For $p \in \mathbb{N}$ a [[prime number]], let \begin{displaymath} E \coloneqq H \mathbb{Z}/p\mathbb{Z} \end{displaymath} be the corresponding [[Eilenberg-MacLane spectrum]]. Then a spectrum which corresponds to a [[chain complex]] under the \href{module+spectrum#StableDoldKanCorrespondence}{stable Dold-Kan corespondence} is $E$-local, def. \ref{AcyclicAndLocal}, if that chain complex has [[chain homology]] groups being $\mathbb{Z}[p^{-1}]$-modules. The $E$-localization of a spectrum in this case is called \emph{[[p-localization]]}. \end{example} (e.g. \hyperlink{LurieLecture}{Lurie, Lecture 20, example 8}) \hypertarget{chromatic_layers}{}\subsubsection*{{Chromatic layers}}\label{chromatic_layers} Let \begin{itemize}% \item $k$ be a [[perfect field]] of [[characteristic]] $p$; \item $f$ be a [[formal group]] of [[height of a formal group|height]] $n$ over $k$. \end{itemize} \begin{defn} \label{}\hypertarget{}{} Write $W(k)$ for the [[ring of Witt vectors]]. Write \begin{displaymath} R \coloneqq W(k)[ [ v_1, \cdots, v_{n-1} ] ] \end{displaymath} for the ring of [[formal power series]] over this ring, in $n-1$ [[variables]]; called the \emph{[[Lubin-Tate ring]]}. \end{defn} \begin{theorem} \label{}\hypertarget{}{} The [[Lubin-Tate formal group]] $\overline{f}$ is the [[universal property|universal]] deformation of $f$ in that for every [[infinitesimal object|infinitesimal thickening]] $A$ of $k$, $\overline{f}$ induces a [[bijection]] \begin{displaymath} Hom_{/k}(R,A) \stackrel{\simeq}{\longrightarrow} Def(A) \end{displaymath} between the $k$-[[associative algebra|algebra]]-[[homomorphisms]] from $R$ into $A$ and the [[deformations]] of $A$. \end{theorem} (e.g. \hyperlink{LurieLecture}{Lurie 10, lect 21, theorem 5}) By the discussion there, this is [[Landweber exactness|Landweber exact]], hence defines a [[cohomology theory]]. Therefore by the [[Landweber exact functor theorem]] there is an [[even periodic cohomology theory]] $E(n)^\bullet$ [[Brown representability theorem|represented by]] a [[spectrum]] $E(n)$ with the property that its [[homotopy groups]] are \begin{displaymath} \pi_\bullet(E(n)) \simeq W(k)[ [v_1, \cdots, v_{n-1} ] ] [ \beta^{\pm 1} ] \end{displaymath} for $\beta$ of degree 2. This is called alternatively $n$th \emph{[[Morava E-theory]]}, or \emph{[[Lubin-Tate theory]]} or \emph{[[Johnson-Wilson theory]]}. (e.g. \hyperlink{LurieLecture}{Lurie, lect 22}) For each [[prime]] $p \in \mathbb{N}$ and for each [[natural number]] $n \in \mathbb{N}$ there is a [[Bousfield localization of spectra]] \begin{displaymath} L_n \coloneqq L_{E(n)} \,, \end{displaymath} where $E(n)$ is the $n$th [[Morava E-theory]] (for the given [[prime]] $p$), called the $n$th \emph{[[chromatic localization]]}. These arrange into the \emph{[[chromatic tower]]} which for each spectrum $X$ is of the form \begin{displaymath} X \to \cdots \to L_n X \to L_{n-1} X \to \cdots \to L_0 X \,. \end{displaymath} The [[homotopy fibers]] of each stage of the tower \begin{displaymath} M_n(X) \coloneqq fib(L_{E(n)}X \longrightarrow L_{E(n-1)}(X)) \end{displaymath} is called the $n$th \emph{[[monochromatic layer]]} of $X$. [[!include chromatic tower examples - table]] \hypertarget{iv_adams_spectral_sequence_for_local_homotopy_groups}{}\subsection*{{\textbf{IV)} Adams spectral sequence for $E$-local homotopy groups}}\label{iv_adams_spectral_sequence_for_local_homotopy_groups} Summing up the above, we need a means to compute [[homotopy groups]] of $E$-[[Bousfield localization of spectra|localized]] [[spectra]]. In (\hyperlink{LurieHigherAlgebra}{Lurie, Higher Algebra, section 1.2.2}) is given a general [[spectral sequence of a filtered stable homotopy type]] which computes homotopy groups of [[spectra]], and in (\hyperlink{LurieLecture}{Lurie 10, lectures 8 and 9}) is discussed that the [[totalization]] of the [[coskeleton]] filtration on the dual [[Cech nerve]] of an [[E-∞ algebra]] yields the $E$-localization. Taken together this is just what we need\ldots{} and this is the general \emph{$E$-[[Adams spectral sequence]]}. We follow the nice exposition in (\hyperlink{Wilson13}{Wilson 13}). First we recall \begin{itemize}% \item \hyperlink{SpectralSequencesForHomotopyGroupsOfFilteredObjects}{Spectral sequences computing homotopy groups of filtered objects} \end{itemize} for the general case of filtered objects in suitable [[stable (∞,1)-categories]]. Then we consider the specialization of that to the \begin{itemize}% \item \hyperlink{CanonicalCosimplicialResolutionOfEInfinityAlgebras}{Canonical cosimplicial resolutions of E-∞ algebras}. \end{itemize} In conclusion this yields for each suitable [[E-∞ algebra]] $E$ over $S$ and $S$-[[∞-module]] $X$ a [[spectral sequence]] converging to the [[homotopy groups]] of the $E$-[[Bousfield localization of spectra|localization]] of $X$, and this is \begin{itemize}% \item \hyperlink{TheEAdamsSpectralSequence}{The E-Adams-Novikov spectral sequence}. \end{itemize} \hypertarget{SpectralSequencesForHomotopyGroupsOfFilteredObjects}{}\subsubsection*{{Spectral sequences for homotopy groups of filtered spectra}}\label{SpectralSequencesForHomotopyGroupsOfFilteredObjects} We discuss the [[spectral sequence of a filtered stable homotopy type]]. Let throughout $\mathcal{C}$ be a [[stable (∞,1)-category]], $\mathcal{A}$ an [[abelian category]], and $\pi \;\colon\; \mathcal{C}\longrightarrow \mathcal{A}$ a [[homological functor]] on $\mathcal{C}$, i.e., a functor that transforms every [[cofiber sequence]] \begin{displaymath} X\to Y\to Z\to \Sigma X \end{displaymath} in $\mathcal{C}$ into a long exact sequence \begin{displaymath} \dots \to \pi(X)\to \pi(Y)\to \pi(Z)\to \pi(\Sigma X) \to \dots \end{displaymath} in $\mathcal{A}$. We write $\pi_n=\pi\circ \Sigma^{-n}$. \begin{example} \label{}\hypertarget{}{} \begin{itemize}% \item $\mathcal{C}$ is arbitrary, $\mathcal{A}$ is the category of [[abelian groups]] and $\pi$ is taking the 0th [[homotopy group]] $\pi_0 \mathcal{C}(S,-)$ of the [[mapping spectrum]] out of some [[object]] $S\in\mathcal{C}$ \item $\mathcal{C}$ is equipped with a [[t-structure]], $\mathcal{A}$ is the [[heart of a stable (∞,1)-category|heart]] of the t-structure, and $\pi$ is the canonical functor. \item $\mathcal{C} = D(\mathcal{A})$ is the [[derived category]] of the abelian category $\mathcal{A}$ and $\pi=H_0$ is the degree-0 [[chain homology]] functor. \item Any of the above with $\mathcal{C}$ and $\mathcal{A}$ replaced by their [[opposite categories]]. \end{itemize} \end{example} \begin{defn} \label{GeneralizedFilteredObject}\hypertarget{GeneralizedFilteredObject}{} A \emph{[[filtered object in an (∞,1)-category]]} in $\mathcal{C}$ is simply a [[sequential diagram]] $X \colon (\mathbb{Z}, \lt) \to \mathcal{C}$ \begin{displaymath} \cdots X_{n-1} \to X_n \to X_{n+1} \to \cdots \,. \end{displaymath} \end{defn} This appears as ([[Higher Algebra|Higher Algebra, def. 1.2.2.9]]). We will take the view that the object being filtered is the [[homotopy limit]] \begin{displaymath} X \coloneqq \underset{\leftarrow}{\lim}_n X_n. \end{displaymath} We could also consider the sequential diagram as a filtering of its [[homotopy colimit]], but this is really an equivalent point of view since we can replace $\mathcal{C}$ by $\mathcal{C}^{op}$. \begin{defn} \label{ChainComplexInStableInfinityCategory}\hypertarget{ChainComplexInStableInfinityCategory}{} Let $I$ be a [[linearly ordered set]]. An $I$-chain complex in a [[stable (∞,1)-category]] $\mathcal{C}$ is an [[(∞,1)-functor]] \begin{displaymath} F \;\colon\; I^{\Delta[1]} \longrightarrow \mathcal{C} \end{displaymath} such that \begin{enumerate}% \item for each $n \in I$, $F(n,n) \simeq 0$ is the [[zero object]]; \item for all $i \leq j \leq k$ the induced [[diagram]] \begin{displaymath} \itexarray{ F(i,j) &\longrightarrow& F(i,k) \\ \downarrow && \downarrow \\ F(j,j) &\longrightarrow& F(j,k) } \end{displaymath} is a [[homotopy pullback]] square. \end{enumerate} \end{defn} This is [[Higher Algebra|Higher Algebra, def. 1.2.2.2]]. \begin{remark} \label{}\hypertarget{}{} Given a $\mathbb{Z}$-chain complex $F$ in $\mathcal{C}$ as in def. \ref{ChainComplexInStableInfinityCategory}, setting \begin{displaymath} C_n \coloneqq \Sigma^{-n} F(n,n+1) \end{displaymath} and defining a [[differential]] induced from the [[connecting homomorphisms]] of the defining [[homotopy fiber sequences]] \begin{displaymath} F(n-1,n) \to F(n-1, n+1) \to F(n,n+1) \end{displaymath} yields an ordinary [[chain complex]] $C_\bullet$ in the [[homotopy category of an (∞,1)-category|homotopy category]]. \end{remark} ([[Higher Algebra|Higher Algebra, remark 1.2.2.3]]) \begin{prop} \label{ChainComplexesFromFilteredObjects}\hypertarget{ChainComplexesFromFilteredObjects}{} Consider the inclusion of [[posets]] \begin{displaymath} (\mathbb{Z}, \leq) \to (\mathbb{Z}\cup \{\infty\}, \leq)^{\Delta[1]} \end{displaymath} given by \begin{displaymath} n \mapsto (n,\infty) \,. \end{displaymath} The induced [[(∞,1)-functor]] \begin{displaymath} Func((\mathbb{Z}\cup \{\infty\}, \leq)^{\Delta[1]} , \mathcal{C}) \longrightarrow Func((\mathbb{Z}, \leq), \mathcal{C}) \end{displaymath} restricts to an [[equivalence of (∞,1)-categories|equivalence]] between the (∞,1)-category of $\mathbb{Z}\cup \{\infty\}$-chain complexes in $\mathcal{C}$ (def. \ref{ChainComplexInStableInfinityCategory}) and that of generalized filtered objects in $\mathcal{C}$ (def. \ref{GeneralizedFilteredObject}). \end{prop} This is [[Higher Algebra|Higher Algebra, lemma 1.2.2.4]]. The inverse functor can be described informally as follows: given a filtered object $X_\bullet$, the associated chain complex $X(\bullet,\bullet)$ is given by \begin{displaymath} X(n, n+r) = \operatorname{fib}(X_n\to X_{n+r}). \end{displaymath} \begin{defn} \label{}\hypertarget{}{} Let $X_\bullet$ be a filtered object in the sense of def. \ref{GeneralizedFilteredObject}. Write $X(\bullet,\bullet)$ for the corresponding chain complex, according to prop. \ref{ChainComplexesFromFilteredObjects}. Then for all $i \leq j \leq k$ there is a [[long exact sequence of homotopy groups]] in $\mathcal{A}$ of the form \begin{displaymath} \cdots \to \pi_n X(i,j) \to \pi_n X(i,k) \to \pi_n X(j,k) \to \pi_{n-1}X(i,j) \to \cdots \,. \end{displaymath} Define then for $p,q \in \mathbb{Z}$ and $r \geq 1$ the object $E^r_{p,q}$ by the canonical \href{abelian+category#FactorizationOfMorphisms}{epi-mono factorization} \begin{displaymath} \pi_{p} X(q-r+1,q+1) \twoheadrightarrow E^r_{p,q} \hookrightarrow \pi_{p} X(q, q+r) \end{displaymath} in the abelian category $\mathcal{A}$, and define the [[differential]] \begin{displaymath} d^r \;\colon\; E_{p,q}^r \to E_{p-1, q-r}^r \end{displaymath} to be the restriction of the [[connecting homomorphism]] \begin{displaymath} \pi_{p} X(q,q+r) \to \pi_{p-1} X(q-r, q) \end{displaymath} from the above long exact sequence (with $i=q-r$, $j=q$, and $k=q+r$). \end{defn} ([[Higher Algebra|Higher Algebra, construction 1.2.2.6]]) \begin{prop} \label{}\hypertarget{}{} $d^r\circ d^r = 0$ and there are natural (in $X_\bullet$) isomorphisms \begin{displaymath} E^{r+1}\cong \operatorname{ker}(d^r)/\operatorname{im}(d^r). \end{displaymath} Thus, $\{E^r_{*,*}\}_{r\geq 1}$ is a bigraded [[spectral sequence]] in the [[abelian category]] $\mathcal{A}$, functorial in the filtered object $X_\bullet$, with \begin{displaymath} E^1_{p,q} = \pi_p \operatorname{fib}(X_q\to X_{q+1}), \qquad d^r: E^r_{p,q}\to E^r_{p-1,q-r}. \end{displaymath} \end{prop} ([[Higher Algebra|Higher Algebra, prop. 1.2.2.7]]) If [[sequential limits]] and [[sequential colimits]] exist in $\mathcal{A}$, we can form the limiting term $E^\infty_{*,*}$ of this spectral sequence. On the other hand, the [[graded object]] $\pi_\bullet (X)$ admits a [[filtered object|filtration]] by \begin{displaymath} F_q \pi_p (X) = \operatorname{ker}(\pi_p (X)\to \pi_p(X_q)) \end{displaymath} and we would like to compare $E^\infty_{*,*}$ with the [[associated graded]] of this filtration. We say that \begin{defn} \label{WeakAndStrongConvergence}\hypertarget{WeakAndStrongConvergence}{} The spectral sequence \textbf{converges weakly} if there is a canonical isomorphism \begin{displaymath} E^\infty_{p,q} \cong F_q\pi_p(X)/ F_{q-1}\pi_p(X) \end{displaymath} for every $p,q\in\mathbb{Z}$. We say that the spectral sequence \textbf{converges strongly} if it converges weakly and if, in addition, the filtration $F_\bullet\pi_p(X)$ is complete on both sides. \end{defn} \begin{remark} \label{}\hypertarget{}{} The meaning of the word \emph{canonical} in def. \ref{WeakAndStrongConvergence} is somewhat subtle since, in general, there is no map from one side to the other. However, there always exists a canonical \emph{[[relation]]} between the two, and we ask that this relation be an isomorphism (see \hyperlink{HiltonStammbach}{Hilton-Stammbach, VIII.7}). \end{remark} \begin{prop} \label{FiltrationSpectralSequence}\hypertarget{FiltrationSpectralSequence}{} Let $\mathcal{C}$ be a [[stable (∞,1)-category]] and let $\pi:\mathcal{C}\to\mathcal{A}$ be a homological functor where $\mathcal{A}$ is an [[abelian category]] which admits [[sequential limits]]. Let $X_\bullet$ be a filtered object in $\mathcal{C}$ such that $\underset{\leftarrow}{\lim} X_\bullet$ exists. Suppose further that: \begin{enumerate}% \item For every $n$, the diagram $r\mapsto \operatorname{fib}(X_{n-r}\to X_n)$ has a limit in $\mathcal{C}$ and that limit is preserved by $\pi$. \item For every $n$, $\pi_n(X_r)=0$ for $r\gg 0$. \end{enumerate} Then the [[spectral sequence]] $\{E^r_{*,*}\}_{r\geq 1}$ in $\mathcal{A}$ converges strongly (def. \ref{WeakAndStrongConvergence}). We write: \begin{displaymath} E_{p,q}^1 = \pi_{p} \operatorname{fib}(X_q\to X_{q+1}) \Rightarrow \pi_{p} (\underset{\leftarrow}{\lim} X_\bullet) \end{displaymath} \end{prop} There is also a dual statement in which limits are replaced by colimits, but it is in fact a special case of the proposition with $\pi$ replaced by $\pi^{op}$. A proof of this proposition (in dual form) is given in ([[Higher Algebra|Higher Algebra, prop. 1.2.2.14]]). Review is in (\hyperlink{Wilson13}{Wilson 13, theorem 1.2.1}). For the traditional statement in the [[category of chain complexes]] see at \emph{[[spectral sequence of a filtered complex]]}. Plenty of types of [[spectral sequences]] turn out to be special cases of this general construction. [[!include Lurie spectral sequences -- table]] \hypertarget{CanonicalCosimplicialResolutionOfEInfinityAlgebras}{}\subsubsection*{{Canonical cosimplicial resolution of $E_\infty$-algebras}}\label{CanonicalCosimplicialResolutionOfEInfinityAlgebras} We discuss now the special case of coskeletally filtered totalizations coming from the canonical cosimplicial objects induced from [[E-∞ algebras]] (dual [[Cech nerves]]/[[Sweedler corings]]/[[Amitsur complexes]]). In this form this appears as (\hyperlink{LurieLecture}{Lurie 10, theorem 2}). A review is in (\hyperlink{Wilson13}{Wilson 13, 1.3}). For the analog of this in the traditional formulation see (\hyperlink{Ravenel}{Ravenel, ch. 3, prop. 3.1.2}). \begin{defn} \label{FiltrationOfTotalizationByTotalizationOfCoskeleta}\hypertarget{FiltrationOfTotalizationByTotalizationOfCoskeleta}{} Given an [[cosimplicial object in an (∞,1)-category]] with [[(∞,1)-colimits]] \begin{displaymath} Y \;\colon\; \Delta \longrightarrow \mathcal{C} \end{displaymath} its [[totalization]] $Tot Y \simeq \underset{\leftarrow}{\lim}_n Y_n$ is [[filtered object in an (infinity,1)-category|filtered]], def. \ref{GeneralizedFilteredObject}, by the totalizations of its [[coskeleta]] \begin{displaymath} Tot Y \to \cdots \to Tot (cosk_2 Y) \to Tot (cosk_1 Y) \to Tot (cosk_0 Y) \to 0 \,. \end{displaymath} \end{defn} \begin{defn} \label{SpectralSequenceOfSimplicialStableHomotopyType}\hypertarget{SpectralSequenceOfSimplicialStableHomotopyType}{} The [[spectral sequence of a filtered stable homotopy type|filtration spectral sequence]], prop. \ref{FiltrationSpectralSequence}, applied to the filtration of a [[totalization]] by [[coskeleton|coskeleta]] as in def. \ref{FiltrationOfTotalizationByTotalizationOfCoskeleta}, we call the \emph{[[spectral sequence of a simplicial stable homotopy type]]}. \end{defn} ([[Higher Algebra|Higher Algebra, prop. 1.2.4.5]]) \begin{prop} \label{E2PageByMooreComplex}\hypertarget{E2PageByMooreComplex}{} The [[spectral sequence of a simplicial stable homotopy type]] has as first page/$E_1$-term the [[cohomology groups]] of the [[Moore complex]] associated with the [[cosimplicial objects]] of [[homotopy groups]] \begin{displaymath} E_2^{p,q} = H^p(\pi_q(Tot (cosk_\bullet(Y)))) \Rightarrow \pi_{p-q} Tot(Y) \,. \end{displaymath} \end{prop} By the discussion at \emph{[[∞-Dold-Kan correspondence]]} and \emph{[[spectral sequence of a filtered stable homotopy type]]}. This appears as ([[Higher Algebra|Higher Algebra, remark 1.2.4.4]]). Review is around (\hyperlink{Wilson13}{Wilson 13, theorem 1.2.4}). \begin{defn} \label{}\hypertarget{}{} Let $S$ be an [[E-∞ ring]] and let $E$ be an [[E-∞ algebra]] over $S$, hence an [[E-∞ ring]] equipped with a [[homomorphism]] \begin{displaymath} S \longrightarrow E \,. \end{displaymath} The \emph{canonical [[cosimplicial object]]} associated to this (the $\infty$-[[Cech nerve]]/[[Sweedler coring]]/[[Amitsur complex]]) is that given by the iterated [[smash product]]/[[tensor product]] over $S$: \begin{displaymath} E^{\wedge^{\bullet+1}_S} \;\colon\; \Delta \to \mathcal{C} \,. \end{displaymath} More generally, for $X$ an $S$-[[∞-module]], the canonical [[cosimplicial object]] is \begin{displaymath} E^{\wedge^{\bullet+1}_S}\wedge_S X \;\colon\; \Delta \to \mathcal{C} \,. \end{displaymath} \end{defn} \begin{prop} \label{FlatnessCondition}\hypertarget{FlatnessCondition}{} If $E$ is such that the self-[[generalized homology]] $E_\bullet(E) \coloneqq \pi_\bullet(E \wedge_S E)$ (the dual $E$-[[Steenrod operations]]) is such that as a [[module]] over $E_\bullet \coloneqq \pi_\bullet(E)$ it is a [[flat module]], then there is a [[natural equivalence]] \begin{displaymath} \pi_\bullet \left( E^{\wedge^{n+1}_S} \wedge_S X \right) \simeq E_\bullet(E^{\wedge^n_S}) \otimes_{E_\bullet} E_\bullet(X) \,. \end{displaymath} \end{prop} Reviewed for instance as (\hyperlink{Wilson13}{Wilson 13, prop. 1.3.1}). \begin{remark} \label{}\hypertarget{}{} This makes $(E_\bullet, E_\bullet(E))$ be the [[commutative Hopf algebroid]] formed by the $E$-[[Steenrod algebra]]. See there for more on this. \end{remark} \begin{example} \label{}\hypertarget{}{} The condition in prop. \ref{FlatnessCondition} is satisfied for \begin{itemize}% \item $E = H \mathbb{F}_p$ an [[Eilenberg-MacLane spectrum]] with $mod\;p$ [[coefficients]]; \item $E = B P$ the [[Brown-Peterson spectrum]]; \item $E = MU$ the [[complex cobordism cohomology theory|complec cobordism spectrum]]. \end{itemize} It is NOT satisfied for \begin{itemize}% \item $E = H \mathbb{Z}$ the [[Eilenberg-MacLane spectrum]] for [[integer|integers]] [[coefficients]]; \item $E = M S U$. \end{itemize} \end{example} \begin{remark} \label{ExtGroupsByMooreComplex}\hypertarget{ExtGroupsByMooreComplex}{} Under good conditions (\ldots{}), $\pi_\bullet$ of the canonical [[cosimplicial object]] provides a [[resolution]] of [[comodule]] [[tensor product]] and hence computes the [[Ext]]-groups over the [[commutative Hopf algebroid]]: \begin{displaymath} H^p(\pi_q(Tot(cosk_\bullet(E^{\wedge^{\bullet+1}_S } \wedge_S X)))) \simeq Ext^p_{E_\bullet(E)}(\Sigma^q E_\bullet, E_\bullet(X)) \,. \end{displaymath} (\ldots{}) \end{remark} \begin{remark} \label{CanonicalMapFromELocalizationToTotalization}\hypertarget{CanonicalMapFromELocalizationToTotalization}{} There is a canonical map \begin{displaymath} L_E X \stackrel{}{\longrightarrow} \underset{\leftarrow}{\lim}_n (E^{\wedge^{n+1}_S}\wedge_S X) \end{displaymath} from the $E$-[[Bousfield localization of spectra]] of $X$ into the [[totalization]]. \end{remark} (\href{LurieLecture}{Lurie 10, lecture 30, prop. 1}) We consider now conditions for this morphism to be an [[equivalence]]. \begin{defn} \label{CoreOfARing}\hypertarget{CoreOfARing}{} For $R$ a [[ring]], its \emph{core} $c R$ is the [[equalizer]] in \begin{displaymath} c R \longrightarrow R \stackrel{\longrightarrow}{\longrightarrow} R \otimes R \,. \end{displaymath} \end{defn} \begin{prop} \label{SufficientConditionsForTotalizationToBeELocalization}\hypertarget{SufficientConditionsForTotalizationToBeELocalization}{} Let $E$ be a [[connective spectrum|connective]] [[E-∞ ring]] such that the core or $\pi_0(E)$, def. \ref{CoreOfARing} is either of \begin{itemize}% \item the [[localization of a ring|localization]] of the [[integers]] at a set $J$ of [[primes]], $c \pi_0(E) \simeq \matbb{Z}[J^{-1}]$; \item $\mathbb{Z}_n$ for $n \geq 2$. \end{itemize} Then the map in remark \ref{CanonicalMapFromELocalizationToTotalization} is an equivalence \begin{displaymath} L_E X \stackrel{\simeq}{\longrightarrow} \underset{\leftarrow}{\lim}_n (E^{\wedge^{n+1}_S}\wedge_S X) \,. \end{displaymath} \end{prop} (\href{Bousfield+localization+of+spectra#Bousfield79}{Bousfield 79}, \href{LurieLecture}{Lurie 10, lecture 30, prop. 3}, \href{LurieLecture}{Lurie 10, lecture 31,}). \hypertarget{TheEAdamsSpectralSequence}{}\subsubsection*{{The $E$-Adams-Novikov spectral sequence}}\label{TheEAdamsSpectralSequence} Summing this up yields the general $E$-Adams(-Novikov) spectral sequence \begin{cor} \label{}\hypertarget{}{} Let $E$ a [[connective spectrum|connective]] [[E-∞ ring]] that satisfies the conditions of prop. \ref{SufficientConditionsForTotalizationToBeELocalization}. Then by prop. \ref{FiltrationSpectralSequence} and prop. \ref{SufficientConditionsForTotalizationToBeELocalization} there is a strongly convergent multiplicative [[spectral sequence]] \begin{displaymath} E^{p,q}_\bullet \Rightarrow \pi_{q-p} L_{c \pi_0 E} X \end{displaymath} converging to the [[homotopy groups]] of the $c \pi_0(E)$-[[Bousfield localization of spectra|localization]] of $X$. If moreover the dual $E$-[[Steenrod algebra]] $E_\bullet(E)$ is [[flat module|flat]] as a [[module]] over $E_\bullet$, then, by prop. \ref{E2PageByMooreComplex} and remark \ref{ExtGroupsByMooreComplex}, the $E_1$-term of this spectral sequence is given by the [[Ext]]-groups over the $E$-[[Steenrod algebra|Steenrod]] [[commutative Hopf algebroid|Hopf algebroid]]. \begin{displaymath} E^{p,q}_\bullet = Ext^p_{E_\bullet(E)}(\Sigma^q E_\bullet, E_\bullet X) \,. \end{displaymath} \end{cor} \hypertarget{references}{}\subsection*{{References}}\label{references} An introduction to the chromatic perspective on the homotopy groups of spheres and the image of $J$ is in: \begin{itemize}% \item [[Mark Mahowald]], [[Doug Ravenel]], \emph{Towards a Global Understanding of the Homotopy Groups of Spheres}, 1998 (\href{http://www.math.rochester.edu/people/faculty/doug/mypapers/global.pdf}{pdf}) \end{itemize} The bulk of the basic constructions is in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Chromatic Homotopy Theory]]}, lecture notes (2010) \end{itemize} \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Algebra]]} \end{itemize} Recent surveys of the modern picture are in \begin{itemize}% \item \href{http://math.mit.edu/conferences/talbot/}{Talbot 2013: Chromatic Homotopy Theory}, \emph{\href{http://math.northwestern.edu/~htanaka/pretalbot2013/index.php?pageID=links}{2013 Pre-Talbot Seminar Chromatic homotopy theoy}} \end{itemize} and of relevance for the above discussion are particularly the following contributions there \begin{itemize}% \item [[Mark Behrens]], section 1 of Introduction talk at \emph{\href{http://math.mit.edu/conferences/talbot/index.php?year=2013&sub=talks}{Talbot 2013: Chromatic Homotopy Theory}} (\href{http://math.mit.edu/conferences/talbot/2013/1-Behrens-intro.pdf}{pdf}, \href{http://math.mit.edu/conferences/talbot/2013/Behrens-Introduction-chromatic-homotopy-thy-4-22-13.pdf}{pdf}) \end{itemize} \begin{itemize}% \item [[Dylan Wilson]] \emph{Spectral Sequences from Sequences of Spectra: Towards the Spectrum of the Category of Spectra} lecture at \emph{\href{http://math.northwestern.edu/~htanaka/pretalbot2013/index.php}{2013 Pre-Talbot Seminar}} (\href{http://math.northwestern.edu/~htanaka/pretalbot2013/notes/2013-03-21-Dylan-Wilson-ANSS.pdf}{pdf}) \end{itemize} \begin{itemize}% \item Ben Knudsen, \emph{First chromatic layer of the sphere spectrum = homotopy of the $K(1)$-local sphere}, talk at \emph{\href{http://math.northwestern.edu/~htanaka/pretalbot2013/index.php}{2013 Pre-Talbot Seminar}} (\href{http://math.northwestern.edu/~htanaka/pretalbot2013/notes/2013-04-04-Rob-Legg-K1-local-sphere.pdf}{pdf}) \end{itemize} \begin{itemize}% \item [[Vitaly Lorman]], \emph{Chromatic homotopy theory at height 1 and the image of $J$}, talk at \emph{\href{http://math.mit.edu/conferences/talbot/index.php?year=2013&sub=talks}{Talbot 2013: Chromatic Homotopy Theory}} (\href{http://math.mit.edu/conferences/talbot/2013/Image%20of%20J-1.pdf}{pdf}) \end{itemize} Loads of details for computations in the Adams spectral sequence are in \begin{itemize}% \item [[Doug Ravenel]], \emph{[[Complex cobordism and stable homotopy groups of spheres]]}, 1986 \end{itemize} \end{document}