\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Jacob Lurie} Jacob Lurie is a mathematician at the Institute for Advanced Study. \begin{itemize}% \item \href{http://www.math.harvard.edu/~lurie/}{website} \item \href{http://en.wikipedia.org/wiki/Jacob_Lurie}{Wikipedia entry} \item \href{https://www.ias.edu/scholars/lurie}{Institute for Advanced Study entry} \end{itemize} After an early interest in [[formal logic]] (specifically notions of [[computability|computable]] [[surreal numbers]], see \href{http://www.ams.org/notices/199607/comm-conway.pdf}{Notices of the AMS vol 43, Number 7}) Lurie indicated in \href{http://dspace.mit.edu/handle/1721.1/30144}{his PhD thesis} how the [[moduli stack of elliptic curves]] together with the collection of [[elliptic cohomology]] [[spectra]] associated to each [[elliptic curve]] is naturally understood as a geometric object in a [[homotopy theory|homotopy theoretic]] refinement of [[algebraic geometry]] that has come to be known as [[derived algebraic geometry]]. He then embarked on a monumental work laying out detailed foundations of the subjects necessary for this statement, which is [[homotopy theory]] in its modern incarnation as [[higher category theory]], [[higher geometry]] in terms of [[higher topos theory]] and finally [[higher algebra]] in terms of [[(infinity,1)-operad|higher operads]], all in principle very much along the lines originally developed by [[Alexander Grothendieck]] and his school for ordinary [[algebraic geometry]], but now considerably further refined to the general context of [[homotopy theory]]. While some developments in these topics had been available before, Lurie's comprehensive work has arguably led these subjects to an era of reinvigorated activity with a variety of further spin-offs. Among these most notable is maybe the formalization and proof of the [[cobordism hypothesis]], which lays [[monoidal (infinity,n)-category|higher monoidal category theoretic]] foundations for ([[extended topological quantum field theory|local, topological]]) [[quantum field theory]]. In 2014 Lurie was awarded a \href{http://www.macfound.org/fellows/921/}{MacArthur Genius Grant} and the Breakthrough Prize in Mathematics. \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{references_partly_indexed_on_the_lab}{References (partly) indexed on the $n$Lab}\dotfill \pageref*{references_partly_indexed_on_the_lab} \linebreak \noindent\hyperlink{higher_category_theory}{Higher category theory}\dotfill \pageref*{higher_category_theory} \linebreak \noindent\hyperlink{higher_topos_theory}{Higher topos theory}\dotfill \pageref*{higher_topos_theory} \linebreak \noindent\hyperlink{higher_algebra}{Higher algebra}\dotfill \pageref*{higher_algebra} \linebreak \noindent\hyperlink{higher_geometry}{Higher geometry}\dotfill \pageref*{higher_geometry} \linebreak \noindent\hyperlink{elliptic_cohomology}{Elliptic cohomology}\dotfill \pageref*{elliptic_cohomology} \linebreak \noindent\hyperlink{publications_before_thesis}{Publications before thesis}\dotfill \pageref*{publications_before_thesis} \linebreak \noindent\hyperlink{other_material}{Other material}\dotfill \pageref*{other_material} \linebreak \hypertarget{references_partly_indexed_on_the_lab}{}\subsection*{{References (partly) indexed on the $n$Lab}}\label{references_partly_indexed_on_the_lab} \hypertarget{higher_category_theory}{}\subsubsection*{{Higher category theory}}\label{higher_category_theory} \begin{itemize}% \item \emph{[[(∞,2)-Categories and the Goodwillie Calculus]]} (\href{http://www.math.harvard.edu/~lurie/papers/GoodwillieI.pdf}{pdf}, \href{http://arxiv.org/abs/0905.0462}{arXiv}) on [[(∞,1)-category|(∞,1)-categories]] of [[(∞,n)-category|(∞,n)-categories]], specifically on [[internal (∞,1)-categories]], and on [[Goodwillie calculus]] \end{itemize} on [[higher category theory]], [[internal (∞,1)-categories]] \begin{itemize}% \item [[On the Classification of Topological Field Theories]] (\href{http://arxiv.org/abs/0905.0465}{arXiv}) on [[FQFT|functorial]] [[extended topological quantum field theory|extended]] [[TQFT|topological]] [[quantum field theory]] classified via the [[cobordism theorem]] by [[symmetric monoidal (∞,n)-categories]] \end{itemize} \hypertarget{higher_topos_theory}{}\subsubsection*{{Higher topos theory}}\label{higher_topos_theory} \begin{itemize}% \item \emph{[[Higher Topos Theory]]} (\href{http://arxiv.org/abs/math.CT/0608040}{arXiv}, \href{http://www.math.harvard.edu/~lurie/papers/highertopoi.pdf}{published version}) on [[(∞,1)-category theory]] and [[higher topos theory]] \end{itemize} \hypertarget{higher_algebra}{}\subsubsection*{{Higher algebra}}\label{higher_algebra} \begin{itemize}% \item \emph{[[Higher Algebra]]} on [[higher algebra]] \end{itemize} subsuming \begin{itemize}% \item [[Stable ∞-Categories]] (\href{http://arxiv.org/abs/math/0608228}{arXiv}) on [[stable (∞,1)-categories]] [[stable homotopy theory]] and [[homological algebra]] \item [[higher algebra|Noncommutative Algebra]] (\href{http://arxiv.org/abs/math/0702299}{arXiv}) and [[higher algebra|Commutative Algebra]] (\href{http://arxiv.org/abs/math/0703204}{arXiv}, \href{http://www.math.harvard.edu/~lurie/papers/DAG-III.pdf}{pdf}) \item \emph{$\mathbb{E}[k]$-[[Ek-Algebras|Algebras]]} (\href{http://www.math.harvard.edu/~lurie/papers/DAG-VI.pdf}{pdf}) on [[little cubes operad]] \item [[Deformation Theory]] (\href{http://arxiv.org/abs/0709.3091}{arXiv}) on the notions of [[Kähler differential]] and [[cotangent complex]] and their generalization from the ordinary context of [[algebra]] to that of [[higher algebra]]. \item \emph{[[Moduli Problems and DG-Lie Algebras]]} on [[∞-Lie algebra]]s as formal neighbourhoods of point in [[∞-stack]]s. \end{itemize} \hypertarget{higher_geometry}{}\subsubsection*{{Higher geometry}}\label{higher_geometry} The foundations of [[higher geometry]]: \begin{itemize}% \item [[Structured Spaces]] (\href{http://arxiv.org/abs/0905.0459}{arXiv}) \begin{itemize}% \item on [[structured (∞,1)-topos]]es and [[generalized schemes]] \end{itemize} \end{itemize} Survey on the general program \begin{itemize}% \item PhD thesis, [[Derived Algebraic Geometry]] on [[derived algebraic geometry]] \end{itemize} A volume on [[E-∞ geometry]] ([[spectral algebraic geometry]]) \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Spectral Algebraic Geometry]]} \end{itemize} The basic definitions are in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Spectral Schemes]]} \end{itemize} Fundamental properties of $E_\infty$-geometry are discussed in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Quasi-Coherent Sheaves and Tannaka Duality Theorems]]} \item [[Jacob Lurie]], \emph{[[Closed Immersions]]} \item [[Jacob Lurie]], \emph{[[Descent Theorems]]} \item [[Jacob Lurie]], \emph{[[Proper Morphisms, Completions, and the Grothendieck Existence Theorem]]} \item [[Jacob Lurie]], \emph{[[Representability Theorems]]} \item [[Jacob Lurie]], \emph{[[Rational and p-adic Homotopy Theory]]} \end{itemize} Application to [[moduli stack of elliptic curves]]: \begin{itemize}% \item [[A Survey of Elliptic Cohomology]] (\href{http://www.math.harvard.edu/~lurie/papers/survey.pdf}{pdf}) on the [[generalized (Eilenberg-Steenrod) cohomology]] theory [[tmf]], the gluing of all [[elliptic cohomology]] theories \end{itemize} \hypertarget{elliptic_cohomology}{}\subsubsection*{{Elliptic cohomology}}\label{elliptic_cohomology} \begin{itemize}% \item \emph{Elliptic cohomology I: Spectral abelian varieties} (\href{http://www.math.harvard.edu/~lurie/papers/Elliptic-I.pdf}{pdf}) \item \emph{Elliptic cohomology II: Orientations} (\href{http://www.math.harvard.edu/~lurie/papers/Elliptic-II.pdf}{pdf}) \item \emph{Elliptic cohomology III: Tempered Cohomology} (\href{http://www.math.harvard.edu/~lurie/papers/Elliptic-III-Tempered.pdf}{pdf}) \item \emph{Elliptic cohomology IV: Equivariant elliptic cohomology}, (announced) \end{itemize} \hypertarget{publications_before_thesis}{}\subsubsection*{{Publications before thesis}}\label{publications_before_thesis} \begin{itemize}% \item M H Freedman, A Kitaev, J Lurie, \emph{Diameters of homogeneous spaces}, Math. res. lett. 10:1, 11-20 (2003) \item J. Lurie, \emph{Anti-admissible sets}, J Symb Logic 64:2, 408-435 (1999) \item J. Lurie, \emph{On a conjecture of Conway}, Illinois J. Math. 46:2, 497-506 (2002) \item J. Lurie, \emph{On simply laced Lie algebras and their minuscule representations}, Comment. Math. Helv. 76:3, 515-575 (2001) \href{http://dx.doi.org/10.1007/PL00013217}{doi} \end{itemize} \hypertarget{other_material}{}\subsection*{{Other material}}\label{other_material} \begin{itemize}% \item \href{http://www.math.harvard.edu/~lurie/FF.html}{Informal notes} on the [[Fargues-Fontaine curve]] with [[Dennis Gaitsgory]]. \item [[Kerodon]] is an online textbook on [[Categorical Homotopy Theory|categorical homotopy theory]] and related mathematics. \end{itemize} category: people [[!redirects J. Lurie]] \end{document}