\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Jacobi form} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{complex_geometry}{}\paragraph*{{Complex geometry}}\label{complex_geometry} [[!include complex geometry - contents]] \hypertarget{elliptic_cohomology}{}\paragraph*{{Elliptic cohomology}}\label{elliptic_cohomology} [[!include elliptic cohomology -- contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{JacobiThetaFunctions}{Jacobi theta-functions}\dotfill \pageref*{JacobiThetaFunctions} \linebreak \noindent\hyperlink{weierstrass_function}{Weierstrass function}\dotfill \pageref*{weierstrass_function} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Jacobi forms are [[power series]] of two variables which in one variable behave like a [[modular form]] and in the other have an ``elliptic'' nature. They arise naturally as the characteristic series of the [[elliptic genus]]/[[Witten genus]] (\hyperlink{Zagier86}{Zagier 86, pages 8-9}). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $k, n \in \mathbb{Z}$, a \emph{Jacobi form} of \emph{weight} $k$ and \emph{index} $n$ is a [[function]] of the form \begin{displaymath} \phi \;\colon\; H \times \mathbb{C} \longrightarrow \mathbb{C} \end{displaymath} hence from the [[product]] of the [[upper half plane]] with the full [[complex plane]] which transforms under \begin{displaymath} \left( \itexarray{ a & b \\ c & d } \right) \in SL_2(\mathbb{Z}) \end{displaymath} as \begin{displaymath} \phi \left( \frac{a \tau + b}{c \tau + d}, \frac{z}{c \tau + d} \right) = (c \tau+ d)^k \exp(2 \pi i n c z^2 / (c \tau + d)) \phi(\tau, z) \,. \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{JacobiThetaFunctions}{}\subsubsection*{{Jacobi theta-functions}}\label{JacobiThetaFunctions} The most important examples are the [[Jacobi theta-functions]]. The four Jacobi $\theta$-functions are (with $q = e^{2\pi i \tau}$) \begin{displaymath} \theta(z,\tau) \coloneqq 2 q^{1/8} sin(\pi z) \prod_{j = 1}^{\infty} \left( \left( 1 - q^{j} \right) \left( 1 - e^{2\pi i z} q^{j} \right) \left( 1 - e^{-2 \pi i z} q^{j} \right) \right) \end{displaymath} \begin{displaymath} \theta_1(z,\tau) \coloneqq 2 q^{1/8} cos(\pi z) \prod_{j = 1}^{\infty} \left( \left( 1 - q^{j} \right) \left( 1 + e^{2\pi i z} q^{j} \right) \left( 1 + e^{-2 \pi i z} q^{j} \right) \right) \end{displaymath} \begin{displaymath} \theta_2(z,\tau) \coloneqq \;\;\;\;\;\;\;\;\; \prod_{j = 1}^{\infty} \left( \left( 1 - q^{j} \right) \left( 1 - e^{2\pi i z} q^{j - 1/2} \right) \left( 1 - e^{-2 \pi i z} q^{j - 1/2} \right) \right) \end{displaymath} \begin{displaymath} \theta_3(z,\tau) \coloneqq \;\;\;\;\;\;\;\;\; \prod_{j = 1}^{\infty} \left( \left( 1 - q^{j} \right) \left( 1 + e^{2\pi i z} q^{j - 1/2} \right) \left( 1 + e^{-2 \pi i z} q^{j - 1/2} \right) \right) \end{displaymath} See for instance (\hyperlink{KL95}{KL 95, section 2.4}, \hyperlink{ChenHanZhang10}{Chen-Han-Zhang 10, section 2}) for a review in the context of [[elliptic genera]]. As part of this, the [[Kac-Weyl character]] of an integral highest-weight [[loop group representation]] is a Jacobi form (\hyperlink{KL95}{KL 95, section 2.2}). The \textbf{Jacobi identity} (see at \emph{[[Jacobi triple product]]}) asserts that these are related by \begin{displaymath} \theta'(0,\tau) \coloneqq \frac{\partial}{\partial z}\theta(0,\tau) = \pi \theta_1(0,\tau) \theta_2(0,\tau) \theta_3(0,\tau) \,. \end{displaymath} \hypertarget{weierstrass_function}{}\subsubsection*{{Weierstrass function}}\label{weierstrass_function} (\ldots{}) \hypertarget{references}{}\subsection*{{References}}\label{references} The original canonical account is \begin{itemize}% \item Martin Eichler, [[Don Zagier]], \emph{The theory of Jacobi forms}, Progress in Mathematics 55, Boston, MA: Birkh\"a{}user Boston (1985), ISBN 978-0-8176-3180-2, MR 781735 \end{itemize} Discussion of Jacobi forms as coefficients of the [[elliptic genus]]/[[Witten genus]] includes \begin{itemize}% \item [[Don Zagier]], pages 8,9 of \emph{Note on the Landweber-Stong elliptic genus} 1986 (\href{http://people.mpim-bonn.mpg.de/zagier/files/doi/10.1007/BFb0078047/fulltext.pdf}{pdf}) \item [[Kefeng Liu]], \emph{On modular invariance and rigidity theorems}, J. Differential Geom. Volume 41, Number 2 (1995), 247-514 (\href{http://projecteuclid.org/euclid.jdg/1214456221}{EUCLID}, \href{http://www.math.ucla.edu/~liu/Research/loja.pdf}{pdf}) \item [[Matthew Ando]], Christopher French, [[Nora Ganter]], \emph{The Jacobi orientation and the two-variable elliptic genus}, Algebraic and Geometric Topology 8 (2008) p. 493-539 (\href{http://www.msp.warwick.ac.uk/agt/2008/08-01/agt-2008-08-016s.pdf}{pdf}) \item Qingtao Chen, [[Fei Han]], [[Weiping Zhang]], \emph{Generalized Witten Genus and Vanishing Theorems}, Journal of Differential Geometry 88.1 (2011): 1-39. (\href{http://arxiv.org/abs/1003.2325}{arXiv:1003.2325}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Jacobi_form}{Jacobi form}} \end{itemize} [[!redirects Jacobi forms]] [[!redirects Jacobi theta-function]] \end{document}