\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Jordan-Banach algebra} \hypertarget{jordanbanach_algebras}{}\section*{{Jordan--Banach algebras}}\label{jordanbanach_algebras} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Jordan--Banach algebras, $JB$-algebras, and the like fill out the following grand [[analogy]]: \newline | associative [[Banach algebra|Banach]] $*$-algebra | Jordan--Banach algebra | [[Jordan–Lie–Banach algebra]] | | $C^*$-[[C-star-algebra|algebra]] | $JB$-algebra | $JLB$-[[JLB-algebra|algebra]] | | [[von Neumann algebra]] | $JBW$-algebra | $JLBW$-[[JLBW-algebra|algebra]] | Just as a [[Jordan algebra]] that happens to be associative is the same thing as an [[associative algebra|associative]] $*$-[[star-algebra|algebra]] with trivial [[involution]] (aka simply an associative algebra) that happens to be [[commutative algebra|commutative]], the analogous result holds in the lower rows. One can also consider Jordan $*$-algebras and the like, but the interesting thing is that important results about $C^*$-[[C-star-algebra|algebras]] have analogues already for $JB$-algebras. Instead of an involution, we can add a compatible [[Lie algebra]] structure to a Jordan algebra; then even \emph{without} assuming associativity or commutativity, a [[Jordan–Lie algebra]] over the [[real numbers]] is the same thing as an associative $*$-algebra over the [[complex numbers]], up to [[equivalence of categories]], and this extends to lower rows. The right column is discussed at [[Jordan–Lie–Banach algebra]]; here we discuss the middle column (assuming the top row and left column as known). \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $A$ be a [[Banach space]], typically over the [[real numbers]], but potentially over any [[topological field]] (or possibly even more general). We will generally assume the real numbers, and some theorems may rely on this, or at least on the divisibility of $2$ in the [[ground field]]. \begin{defn} \label{}\hypertarget{}{} The Banach space $A$ becomes a \textbf{Jordan--Banach algebra} if it is equipped with a [[binary operation]] $A \times A \to A$, called the \emph{Jordan multiplication} and often written infix as $\circ$, satisfying these identities: \begin{itemize}% \item [[short map|shortness]]: ${\|x \circ y\|} \leq {\|x\|} {\|y\|}$, \item [[bilinear map|bilinearity]]: $(a x + y) \circ (b u + v) = a b (x \circ u) + a (x \circ v) + b (y \circ u) + y \circ v$, \item commutativity: $x \circ y = y \circ x$, \item Jordan identity: $(x \circ y) \circ (x \circ x) = x \circ (y \circ (x \circ x))$. \end{itemize} \end{defn} For motivation of the first two, see [[Banach algebra]]; for motivation of the last three, see [[Jordan algebra]]. \begin{defn} \label{}\hypertarget{}{} The Jordan--Banach algebra $A$ is \textbf{unital} if the Jordan multiplication has an [[identity element]] in its unit ball, usually denoted $1$: \begin{itemize}% \item $1 \circ x = x$, \item $x \circ 1 = x$, \item ${\|1\|} \leq 1$. \end{itemize} \end{defn} People might state the last clause as ${\|1\|} = 1$, which follows (using shortness of the multiplication) from the existence of any $x \ne 0$. However, ${\|1\|} = 0$ in the [[trivial ring|trivial algebra]], and this should be allowed. \begin{defn} \label{}\hypertarget{}{} The Jordan--Banach algebra $A$ is a \textbf{$JB$-algebra} if it satisfies these identities: \begin{itemize}% \item \textbf{$B$-identity}: ${\|x \circ x\|} = {\|x\|^2}$, \item \emph{[[formally real algebra|positivity]]}: ${\|x \circ x\|} \leq {\|x \circ x + y \circ y\|}$. \end{itemize} \end{defn} Shortness of the multiplication follows from the $B$-identity (via the [[polarization identities]] and the triangle identity), so it may be left out of a direct definition of $JB$-algebras; the same goes for the norm of $1$ in the unital case. (Compare the analogous results for $C^*$-[[C-star-algebra|algebras]].) Conversely, given shortness of multiplication (or even of squaring), these two identities may be combined into the single inequality \begin{displaymath} {\|x\|}^2 \leq {\|x \circ x + y \circ y\|} . \end{displaymath} Also, positivity implies that $A$ is [[formally real algebra|formally real]]: if $x^2 + y^2 = 0$, then $x, y = 0$ (and so on for any number of terms). Given this, the Jordan identity is equivalent to [[power-associative algebra|power-associativity]] (which it implies regardless) in a direct definition of $JB$-algebra. \begin{defn} \label{}\hypertarget{}{} The $JB$-algebra $A$ is a \textbf{$JBW$-algebra} if it is unital and if its [[underlying]] Banach space has a [[predual]] $A_*$. \end{defn} See [[von Neumann algebra]] for motivation of the predual. (Is it unique? Should be!) \begin{defn} \label{}\hypertarget{}{} A \textbf{[[homomorphism]]} from a Jordan--Banach algebra $A$ to a Jordan--Banach algebra $B$ is a [[bounded linear map]] $T\colon A \to B$ of Banach spaces (everywhere defined) such that $T(x \circ y) = T(x) \circ T(y)$ always holds. If $A$ and $B$ are unital, then the homomorphism is \textbf{unital} if $T(1) = 1$. \end{defn} To get the right notion of [[isomorphism]], the [[morphisms]] in the [[category]] of Jordan--Banach algebras should be the \emph{[[short linear map|short]]} homomorphisms (see \href{Ban#morphisms}{Ban\#morphisms} for discussion). However, if $A$ and $B$ are $JB$-algebras, then every homomorphism is short (as with $C^*$-algebras); in fact, we do not even have to assume that $T$ is bounded. Similarly, a morphism of unital Jordan--Banach algebras should be unital. \begin{defn} \label{}\hypertarget{}{} Given a Jordan--Banach algebra $A$ and a [[Hilbert space]] $H$, a \textbf{[[representation]]} $\pi$ of $A$ on $H$ is a homomorphism from $A$ to the algebra of [[Hermitian operators]] on $H$ (which is a $JB$-algebra, in fact a $JBW$-algebra, under the symmetrized product, as described in the examples). Such a representation is \textbf{[[faithful representation|faithful]]} if it's an [[injective function]]. \end{defn} Again, we should really look only at the short representations (which is automatic for a $JB$-algebra) and look especially at the unital representations of a unital Jordan--Banach algebra. Recall that a Jordan algebra is \textbf{[[special Jordan algebra|special]]} if it has a faithful representation on a [[vector space]] (which follows if it has any injective homomorphism to the Jordanization of any associative algebra). \begin{defn} \label{}\hypertarget{}{} A \textbf{$JC$-algebra} is $JB$-algebra that has a faithful representation on a Hilbert space. A \textbf{$JW$-algebra} is a $JBW$-algebra that's also a $JC$-algebra. \end{defn} This follows if the $JB$-algebra has any injective homomorphism to the algebra of [[Hermitian operators]] in any $C^*$-algebra, by the theorem that every abstract $C^*$-algebra may be made concrete. But this theorem does \emph{not} itself have an analogue for $JB$-algebras; the [[Albert algebra]] $\mathfrak{h}_3(\mathbb{O})$ is a $JB$-algebra (even a $JBW$-algebra) that is not a $JC$-algebra. This is probably unfortunate terminology (compare `$B^*$-algebra' vs `$C^*$-algebra' and `$W^*$-algebra' vs `von Neumann algebra'); it would probably be better just to call such $JB$-algebras \textbf{special} (but somebody might think that this just means that the underlying Jordan algebra is special, which is weaker). We do need some term, however, thanks to the Albert algebra. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The main example of a $JB$-algebra is the algebra of [[self-adjoint operators]] in a $C^*$-[[C-star-algebra|algebra]]. For a $JBW$-algebra, try the algebra of self-adjoint operators in a [[von Neumann algebra]]. In particular, the algebra of Hermitian operators on a [[Hilbert space]] is a $JBW$-algebra, in fact a $JW$-algebra. Still more particularly, the [[trivial ring|trivial algebra]] (which is the algebra of self-adjoint operators on the zero Hilbert space) is a $JW$-algebra (although it won't fit definitions by authors who require ${\|1\|} = 1$). Every $JB$-algebra is [[formally real algebra|formally real]]; conversely, all of the formally real Jordan algebras in [[finite-dimensional space|finite dimensions]] are $JBW$-algebras, and all of the special ones are $JW$-algebras. This leaves the [[Albert algebra]] $\mathfrak{h}_3(O)$ as the basic example of a $JBW$-algebra that is not a $JW$-algebra. (See \href{Jordan+algebra#frc}{Jordan algebra\#frc} for the classification of the finite-dimensional formally real Jordan algebras.) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} $JB$-algebras have nice properties like those of $C^*$-algebras, and $JBW$-algebras have nicer properties like those of von Neumann algebras. They are generally proved in the analogous ways. Some properties are different, however. An associative $JB$-algebra is the same thing as a commutative $C^*$-algebra with trivial involution, which (over the [[real numbers]]) is in turn the same thing as the algebra of (real-valued) [[continuous maps]] vanishing at infinity on a [[local compactum]] (which is a [[compactum]] iff the algebra is unital, and then every continuous map vanishes at infinity). Like any Jordan algebra, a $JB$-algebra $A$ is [[power-associative algebra|power-associative]], so each element $x$ generates an associative (and of course commutative) [[subalgebra]] and hence a local compactum. In a unital $JB$-algebra, each element generates an associative unital subalgebra and hence a compactum $Spec(x)$. Any [[continuous map]] $f\colon Spec(x) \to \mathbb{R}$ therefore defines an element $f(x)$ of $A$. More generally, any associative unital subalgebra $X$ generates a compactum $Spec(X)$, its [[spectrum]], and any continuous map on $Spec(X)$ defines an element of $A$ (in fact belonging to $X$). Thus we have a [[functional calculus]] on $JB$-algebras. In a $JBW$-algebra, we may instead interpret the spectrum as a [[localizable measure space]], with $X$ identified as the algebra of [[essentially bounded function|essentially bounded]] [[measurable functions]] (modulo [[almost equality]]) on the spectrum, so that the functional calculus extends to measurable functions. Since every $JB$-algebra $A$ is [[formally real algebra|formally real]], it comes equipped with a [[partial order]]: $x \leq y$ iff $y - x$ is a sum of squares. The [[order-theoretic structure in quantum mechanics]] fixes the $JB$-algebra structure of a $C^*$-algebra, but not the $JLB$-algebra structure. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[JBW-algebraic quantum mechanics]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Basic stuff is at \begin{itemize}% \item \href{https://en.wikipedia.org/wiki/Jordan_operator_algebra}{Jordan operator algebra} on the English Wikipedia; \end{itemize} and most of that appears to be from \begin{itemize}% \item Harald Hanche-Olsen and Erling St\o{}rmer (1984); \emph{Jordan operator algebras}; Monographs and Studies in Mathematics 21 (Pitman); \href{http://www.math.ntnu.no/~hanche/joa/}{web}, \end{itemize} which I have only begun to read. There is also \begin{itemize}% \item Harald Upmeier (1987); \emph{Jordan Algebras in Analysis, Operator Theory, and Quantum Mechanics}; CBMS Regional Conference Series in Mathematics 67 (AMS), \end{itemize} of which a lot is already on pages 1--4 (the only ones that Google Books would show me). \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} \begin{itemize}% \item [[Jordan algebra]] \item \textbf{Jordan--Banach algebra} \item [[Jordan–Lie–Banach algebra]] \end{itemize} [[!redirects Jordan Banach algebra]] [[!redirects Jordan Banach algebras]] [[!redirects Jordan-Banach algebra]] [[!redirects Jordan-Banach algebras]] [[!redirects Jordan–Banach algebra]] [[!redirects Jordan–Banach algebras]] [[!redirects Jordan--Banach algebra]] [[!redirects Jordan--Banach algebras]] [[!redirects JB-algebra]] [[!redirects JB-algebras]] [[!redirects JB algebra]] [[!redirects JB algebras]] [[!redirects JBW-algebra]] [[!redirects JBW-algebras]] [[!redirects JBW algebra]] [[!redirects JBW algebras]] [[!redirects JC-algebra]] [[!redirects JC-algebras]] [[!redirects JC algebra]] [[!redirects JC algebras]] [[!redirects JW-algebra]] [[!redirects JW-algebras]] [[!redirects JW algebra]] [[!redirects JW algebras]] [[!redirects B-identity]] \end{document}