\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Kähler manifold} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{complex_geometry}{}\paragraph*{{Complex geometry}}\label{complex_geometry} [[!include complex geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{LinearKählerStructure}{Linear Kähler structure}\dotfill \pageref*{LinearKählerStructure} \linebreak \noindent\hyperlink{khler_manifolds}{Kähler manifolds}\dotfill \pageref*{khler_manifolds} \linebreak \noindent\hyperlink{InTermsOfGStructure}{In terms of $G$-Structure}\dotfill \pageref*{InTermsOfGStructure} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_almost_complex_manifold}{Relation to (almost) complex manifold}\dotfill \pageref*{relation_to_almost_complex_manifold} \linebreak \noindent\hyperlink{relation_to_symplectic_manifolds}{Relation to symplectic manifolds}\dotfill \pageref*{relation_to_symplectic_manifolds} \linebreak \noindent\hyperlink{relation_to_spinstructures}{Relation to Spin-structures}\dotfill \pageref*{relation_to_spinstructures} \linebreak \noindent\hyperlink{HodgeStarOperator}{Hodge star operator}\dotfill \pageref*{HodgeStarOperator} \linebreak \noindent\hyperlink{HodgeStructure}{Hodge structure}\dotfill \pageref*{HodgeStructure} \linebreak \noindent\hyperlink{as_riemannian_manifolds}{As $\mathbb{C}$-Riemannian manifolds}\dotfill \pageref*{as_riemannian_manifolds} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{K\"a{}hler manifold} is a [[smooth manifold]] compatibly equipped with \begin{enumerate}% \item [[complex structure]]; \item [[Riemannian structure]]; \item [[symplectic structure]]. \end{enumerate} If the symplectic structure is not compatibly present, it is just a [[Hermitian manifold]]. \begin{tabular}{l|l|l} [[complex structure]]&+ [[Riemannian structure]]&+ [[symplectic structure]]\\ \hline [[complex structure]]&[[Hermitian structure]]&[[Kähler structure]]\\ \end{tabular} Where a Riemannian manifold is a real [[smooth manifold]] equipped with a nondegenerate smooth symmetric 2-form $g$ (the [[Riemannian metric]]), an \textbf{almost K\"a{}hler manifold} is a [[complex manifold|complex holomorphic manifold]] equipped with a nondegenerate hermitian 2-form $h$ (the \textbf{K\"a{}hler $2$-form}). The real [[cotangent bundle]] is replaced with the complex cotangent bundle, and symmetry is replaced with hermitian symmetry. An almost K\"a{}hler manifold is a \textbf{K\"a{}hler manifold} if it satisfies an additional integrability condition. The K\"a{}hler 2-form can be decomposed as $h = g+i\omega$; here $g$ is a [[Riemannian metric]] and $\omega$ a [[symplectic form]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{LinearKählerStructure}{}\subsubsection*{{Linear Kähler structure}}\label{LinearKählerStructure} \begin{defn} \label{KaehlerVectorSpace}\hypertarget{KaehlerVectorSpace}{} \textbf{([[Kähler vector space]])} Let $V$ be a [[finite dimensional vector space|finite-dimensional]] [[real vector space]]. Then a \emph{linear Kähler structure} on $V$ is \begin{enumerate}% \item a \emph{[[linear complex structure]]} on $V$, namely a [[linear map|linear]] [[endomorphism]] \begin{displaymath} J \;\colon\; V \to V \end{displaymath} whose [[composition]] with itself is minus the [[identity morphism]]: \begin{displaymath} J \circ J = - id_V \end{displaymath} \item a skew-symmetric [[bilinear form]] \begin{displaymath} \omega \in \wedge^2 V^\ast \end{displaymath} \end{enumerate} such that \begin{enumerate}% \item $\omega(J(-),J(-)) = \omega(-,-)$; \item $g(-,-) \coloneqq \omega(-,J(-))$ is a [[Riemannian metric]], namely a non-degenerate positive-definite [[bilinear form]] on $V$ (necessarily symmetric, due to the other properties: $g(w,v) = \omega(w,J(v)) = -\omega(J(v),w) = + \omega(J(J(v)), J(w)) = \omega(w,J(w)) = g(v,w)$). \end{enumerate} \end{defn} (e.g. \hyperlink{Boalch09}{Boalch 09, p. 26-27}) Linear Kähler space structure may conveniently be encoded in terms of [[Hermitian space]] structure: \begin{defn} \label{HermitianForm}\hypertarget{HermitianForm}{} \textbf{([[Hermitian form]] and [[Hermitian space]])} Let $V$ be a [[real vector space]] equipped with a [[complex structure]] $J\colon V \to V$. Then a \emph{[[Hermitian form]]} on $V$ is \begin{itemize}% \item a complex-valued real-[[bilinear form]] \begin{displaymath} h \;\colon\; V \otimes V \longrightarrow \mathbb{C} \end{displaymath} \end{itemize} such that this is \emph{symmetric sesquilinear}, in that: \begin{enumerate}% \item $h$ is complex-linear in the first argument; \item $h(w,v) = \left(h(v,w) \right)^\ast$ for all $v,w \in V$ \end{enumerate} where $(-)^\ast$ denotes [[complex conjugation]]. A Hermitian form is \emph{positive definite} (often assumed by default) if for all $v \in V$ \begin{enumerate}% \item $h(v,v) \geq 0$ \item $h(v,v) = 0 \phantom{AA} \Leftrightarrow \phantom{AA} v = 0$. \end{enumerate} A [[complex vector space]] $(V,J)$ equipped with a (positive definite) Hermitian form $h$ is called a (positive definite) \emph{[[Hermitian space]]}. \end{defn} \begin{prop} \label{BasicPropertiesOfHermitianForms}\hypertarget{BasicPropertiesOfHermitianForms}{} \textbf{(basic properties of [[Hermitian forms]])} Let $((V,J),h)$ be a positive definite [[Hermitian space]] (def. \ref{HermitianForm}). Then \begin{enumerate}% \item the [[real part]] of the [[Hermitian form]] \begin{displaymath} g(-,-) \;\coloneqq\; Re(h(-,-)) \end{displaymath} is a [[Riemannian metric]], hence a symmetric positive-definite real-[[bilinear form]] \begin{displaymath} g \;\colon\; V \otimes V \to \mathbb{R} \end{displaymath} \item the [[imaginary part]] of the [[Hermitian form]] \begin{displaymath} \omega(-,-) \;\coloneqq\; -Im(h(-,-)) \end{displaymath} is a [[symplectic form]], hence a non-degenerate skew-symmetric real-[[bilinear form]] \begin{displaymath} \omega \;\colon\; V \wedge V \to \mathbb{R} \,. \end{displaymath} \end{enumerate} hence \begin{displaymath} h = g - i \omega \,. \end{displaymath} The two components are related by \begin{equation} \omega(v,w) \;=\; g(J(v),w) \phantom{AAAAA} g(v,w) \;=\; \omega(v,J(v)) \,. \label{RelationBetweennOmegaAndgOnHermitianSpace}\end{equation} Finally \begin{displaymath} h(J(-),J(-)) = h(-,-) \end{displaymath} and so the Riemannian metrics $g$ on $V$ appearing from (and fully determining) Hermitian forms $h$ via $h = g - i \omega$ are precisely those for which \begin{equation} g(J(-),J(-)) = g(-,-) \,. \label{HermitianMetric}\end{equation} These are called the \emph{[[Hermitian metrics]]}. \end{prop} \begin{proof} The positive-definiteness of $g$ is immediate from that of $h$. The symmetry of $g$ follows from the symmetric sesquilinearity of $h$: \begin{displaymath} \begin{aligned} g(w,v) & \coloneqq Re(h(w,v)) \\ & = Re\left( h(v,w)^\ast\right) \\ & = Re(h(v,w)) \\ & = g(v,w) \,. \end{aligned} \end{displaymath} That $h$ is invariant under $J$ follows from its sesquilinarity \begin{displaymath} \begin{aligned} h(J(v),J(w)) &= i h(v,J(w)) \\ & = i (h(J(w),v))^\ast \\ & = i (-i) (h(w,v))^\ast \\ & = h(v,w) \end{aligned} \end{displaymath} and this immediately implies the corresponding invariance of $g$ and $\omega$. Analogously it follows that $\omega$ is skew symmetric: \begin{displaymath} \begin{aligned} \omega(w,v) & \coloneqq -Im(h(w,v)) \\ & = -Im\left( h(v,w)^\ast\right) \\ & = Im(h(v,w)) \\ & = - \omega(v,w) \,, \end{aligned} \end{displaymath} and the relation between the two components: \begin{displaymath} \begin{aligned} \omega(v,w) & = - Im(h(v,w)) \\ & = Re(i h(v,w)) \\ & = Re(h(J(v),w)) \\ & = g(J(v),w) \end{aligned} \end{displaymath} as well as \begin{displaymath} \begin{aligned} g(v,w) & = Re(h(v,w) \\ & = Im(i h(v,w)) \\ & = Im(h(J(v),w)) \\ & = Im(h(J^2(v),J(w))) \\ & = - Im(h(v,J(w))) \\ & = \omega(v,J(w)) \,. \end{aligned} \end{displaymath} \end{proof} As a corollary: \begin{prop} \label{RelationBetweenKählerVectorSpacesAndHermitianSpaces}\hypertarget{RelationBetweenKählerVectorSpacesAndHermitianSpaces}{} \textbf{(relation between [[Kähler vector spaces]] and [[Hermitian spaces]])} Given a [[real vector space]] $V$ with a [[linear complex structure]] $J$, then the following are equivalent: \begin{enumerate}% \item $\omega \in \wedge^2 V^\ast$ is a [[linear Kähler structure]] (def. \ref{KaehlerVectorSpace}); \item $g \in V \otimes V \to \mathbb{R}$ is a [[Hermitian metric]] \eqref{HermitianMetric} \end{enumerate} where $\omega$ and $g$ are related by \eqref{RelationBetweennOmegaAndgOnHermitianSpace} \begin{displaymath} \omega(v,w) \;=\; g(J(v),w) \phantom{AAAAA} g(v,w) \;=\; \omega(v,J(v)) \,. \end{displaymath} \end{prop} \hypertarget{khler_manifolds}{}\subsubsection*{{Kähler manifolds}}\label{khler_manifolds} (\ldots{}) \hypertarget{InTermsOfGStructure}{}\subsubsection*{{In terms of $G$-Structure}}\label{InTermsOfGStructure} A K\"a{}hler manifold is a [[integrability of G-structure|first-order integrable]] [[almost Hermitian structure]], hence a first order integrable [[G-structure]] for $G = U(n) \hookrightarrow GL(2n,\mathbb{R})$ the [[unitary group]] (e.g. \hyperlink{Verbitsky09}{Verbitsky 09}). By the fact (see at \emph{\href{unitary+group#RelationToOrthogonalSymplecticAndGeneralLinearGroup}{unitary group -- relation to orthogonal, symplectic and general linear group}}) that $U(n) \simeq O(2n) \underset{GL(2n,\mathbb{R})}{\times} Sp(2n,\mathbb{R}) \underset{GL(2n,\mathbb{R})}{\times} GL(n,\mathbb{C})$ this means that a K\"a{}hler manifold structure is precisely a joint [[orthogonal structure]]/[[Riemannian manifold]] structure, [[symplectic manifold]] structure and [[complex manifold]] structure. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} The archetypical elementary example is the following: \begin{example} \label{StandardAlmostKaehlerVectorSpaces}\hypertarget{StandardAlmostKaehlerVectorSpaces}{} \textbf{(standard [[Kähler vector space]])} Let $V \coloneqq \mathbb{R}^2$ be the 2-dimensional [[real vector space]] equipped with the [[complex structure]] $J$ which is given by the canonical identification $\mathbb{R}^2 \simeq \mathbb{C}$, hence, in terms of the canonical [[linear basis]] $(e_i)$ of $\mathbb{R}^2$, this is \begin{displaymath} J = (J^i{}_j) \coloneqq \left( \itexarray{ 0 & -1 \\ 1 & 0 } \right) \,. \end{displaymath} Moreover let \begin{displaymath} \omega = (\omega_{i j}) \coloneqq \left( \itexarray{0 & 1 \\ -1 & 0} \right) \end{displaymath} and \begin{displaymath} g = (g_{i j}) \coloneqq \left( \itexarray{ 1 & 0 \\ 0 & 1} \right) \,. \end{displaymath} Then $(V, J, \omega, g)$ is a [[Kähler vector space]] (def. \ref{KaehlerVectorSpace}) The corresponding [[Kähler manifold]] is $\mathbb{R}^2$ regarded as a [[smooth manifold]] in the standard way and equipped with the [[bilinear forms]] $J, \omega g$ extended as constant rank-2 [[tensors]] over this manifold. If we write \begin{displaymath} x,y \;\colon\; \mathbb{R}^2 \longrightarrow \mathbb{R} \end{displaymath} for the standard [[coordinate functions]] on $\mathbb{R}^2$ with \begin{displaymath} z \coloneqq x + i y \;\coloneqq\; \mathbb{R}^2 \to \mathbb{C} \end{displaymath} and \begin{displaymath} \overline{z} \coloneqq x - i y \;\coloneqq\; \mathbb{R}^2 \to \mathbb{C} \end{displaymath} for the corresponding complex coordinates, then this translates to \begin{displaymath} \omega \in \Omega^2(\mathbb{R}^2) \end{displaymath} being the [[differential 2-form]] given by \begin{displaymath} \begin{aligned} \omega & = d x \wedge d y \\ & = \tfrac{i}{2} d z \wedge d \overline{z} \end{aligned} \end{displaymath} and with [[Riemannian metric]] [[tensor]] given by \begin{displaymath} g = d x \otimes d x + d y \otimes d y \,. \end{displaymath} The [[Hermitian form]] is given by \begin{displaymath} \begin{aligned} h & = g - i \omega \\ & = d z \otimes d \overline{z} \,. \end{aligned} \end{displaymath} \end{example} \begin{proof} This is elementary, but, for the record, here is one way to make it fully explicit (we use [[Einstein summation convention]] and ``$\cdot$'' denotes [[matrix multiplication]]): \begin{displaymath} \begin{aligned} \omega_{i j'} J^{j'}{}_j & = \left( \itexarray{ 0 & 1 \\ -1 & 0 } \right) \cdot \left( \itexarray{ 0 & -1 \\ 1 & 0 } \right) \\ & = \left( \itexarray{ 1 & 0 \\ 0 & 1 } \right) \\ & = g_{i j} \end{aligned} \end{displaymath} and similarly \begin{displaymath} \begin{aligned} \omega(J(-),J(-))_{i j} & = \omega_{i' j'} J^{i'}{}_{i} J^{j'}{}_{j} \\ & = (J^t \cdot \omega \cdot J)_{i j} \\ & = \left( \left( \itexarray{ 0 & 1 \\ -1 & 0 } \right) \cdot \left( \itexarray{ 0 & 1 \\ -1 & 0 } \right) \cdot \left( \itexarray{ 0 & -1 \\ 1 & 0 } \right) \right)_{i j} \\ & = \left( \left( \itexarray{ -1 & 0 \\ 0 & -1 } \right) \cdot \left( \itexarray{ 0 & -1 \\ 1 & 0 } \right) \right)_{i j} \\ & = \left( \itexarray{ 0 & 1 \\ -1 & 0 } \right)_{i j} \\ & = \omega_{i j} \end{aligned} \end{displaymath} \end{proof} \begin{example} \label{}\hypertarget{}{} \textbf{([[Fubini-Study metric]])} There is a unique (up to a scalar) hermitian metric on [[complex projective space]] (which may be normalized), the \emph{[[Fubini-Study metric]]}. All analytic subvarieties of a complex projective space are in fact [[algebraic variety|algebraic subvarieties]] and they inherit the K\"a{}hler structure from the projective space. Examples include [[complex tori]] $\mathbb{C}^n/L$ where $L$ is a lattice in $\mathbb{C}^n$, [[K3-surfaces]], compact [[Calabi-Yau manifolds]], quadrics, products of projective spaces and so on. \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_almost_complex_manifold}{}\subsubsection*{{Relation to (almost) complex manifold}}\label{relation_to_almost_complex_manifold} \begin{quote}% The following based on \href{http://mathoverflow.net/a/73330/381}{this MO comment} by [[Spiro Karigiannis]] \end{quote} When $(X, J)$ is an [[almost complex manifold]], then there is a notion of smooth complex-valued [[differential forms]] of type $(p,q)$. A complex valued $2$-form $\omega$ is of type $(1,1)$ precisely if it satisfies \begin{displaymath} \omega(J v,J w) = \omega(v,w) \end{displaymath} for all smooth [[vector fields]] $v,w$ on $X$. Here $\omega$ is a \emph{real} $2$-form of type $(1,1)$, if $\overline \omega = \omega$. Setting \begin{displaymath} g(v,w) = \omega(v, J w), \end{displaymath} defines a smooth symmetric rank $(2,0)$ [[tensor field]]. This is a [[Riemannian metric]] precisely if it is fiberwise a [[positive definite bilinear form]]. If it $g(-,-) = \omega(-,J -)$ is hence a Riemannian metric, then $\omega(-,-)$ is called positive definite, too. The triple of data $(J, \omega, g)$, where $J$ is an [[almost complex structure]], $\omega$ is a real positive $(1,1)$-[[differential form]], and $g$ is the associated [[Riemannian metric]] this way define an \emph{[[almost Hermitian manifold]]}. Now the condition for $X$ to be a K\"a{}hler is that $X$ be a [[complex manifold]] ($J$ is integrable) and that $d\omega = 0$. Equivalently that for the [[Levi-Civita connection]] $\nabla$ of $G$ we have $\nabla \omega = 0$ or $\nabla J = 0$. Hence given a [[complex manifold]] $X$, together with a \emph{closed} real $2$-form $\omega$, the only additional condition required to ensure that it defines a K\"a{}hler metric is that it be a positive $(1,1)$-form. \hypertarget{relation_to_symplectic_manifolds}{}\subsubsection*{{Relation to symplectic manifolds}}\label{relation_to_symplectic_manifolds} Lifting a [[symplectic manifold]] structure to a K\"a{}hler manifold structure is also called choosing a \emph{[[Kähler polarization]]}. \hypertarget{relation_to_spinstructures}{}\subsubsection*{{Relation to Spin-structures}}\label{relation_to_spinstructures} \begin{prop} \label{}\hypertarget{}{} A spin structure on a [[compact topological space|compact]] [[Hermitian manifold]] ([[Kähler manifold]]) $X$ of complex [[dimension]] $n$ exists precisely if, equivalently \begin{itemize}% \item there is a choice of [[square root]] $\sqrt{\Omega^{n,0}}$ of the [[canonical line bundle]] $\Omega^{n,0}$ (a ``[[Theta characteristic]]''); \item there is a trivialization of the [[first Chern class]] $c_1(T X)$ of the [[tangent bundle]]. \end{itemize} \end{prop} In this case one has: \begin{prop} \label{}\hypertarget{}{} There is a [[natural isomorphism]] \begin{displaymath} S_X \simeq \Omega^{0,\bullet}_X \otimes \sqrt{\Omega^{n,0}}_X \end{displaymath} of the [[sheaf]] of [[sections]] of the [[spinor bundle]] $S_X$ on $X$ with the [[tensor product]] of the [[Dolbeault complex]] with the corresponding [[Theta characteristic]]; Moreover, the corresponding [[Dirac operator]] is the [[Dolbeault-Dirac operator]] $\overline{\partial} + \overline{\partial}^\ast$. \end{prop} This is due to (\hyperlink{Hitchin74}{Hitchin 74}). A textbook account is for instance in (\hyperlink{Friedrich74}{Friedrich 74, around p. 79 and p. 82}). \hypertarget{HodgeStarOperator}{}\subsubsection*{{Hodge star operator}}\label{HodgeStarOperator} On a K\"a{}hler manifold $\Sigma$ of [[dimension]] $dim_{\mathbb{C}}(\Sigma) = n$ the [[Hodge star operator]] acts on the [[Dolbeault complex]] as \begin{displaymath} \star \;\colon\; \Omega^{p,q}(X) \longrightarrow \Omega^{n-q,n-p}(X) \,. \end{displaymath} (notice the exchange of the role of $p$ and $q$) See e.g. (\hyperlink{BiquerdHoering08}{BiquerdH\"o{}ring 08, p. 79}). \hypertarget{HodgeStructure}{}\subsubsection*{{Hodge structure}}\label{HodgeStructure} The [[Hodge theorem]] asserts that for a compact K\"a{}hler manifold, the canonical $(p,q)$-grading of its [[differential forms]] descends to its [[de Rham cohomology]]/[[ordinary cohomology]]. The resulting structure is called a \emph{[[Hodge structure]]}, and is indeed the archetypical example of such. \hypertarget{as_riemannian_manifolds}{}\subsubsection*{{As $\mathbb{C}$-Riemannian manifolds}}\label{as_riemannian_manifolds} [[!include normed division algebra Riemannian geometry -- table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[bilinear form]], [[quadratic form]], [[sesquilinear form]] \item [[symplectic form]], [[Hermitian form]] \item \textbf{K\"a{}hler manifold}, [[hyper-Kähler manifold]], [[quaternionic Kähler manifold]] \begin{itemize}% \item [[Kähler potential]] \end{itemize} \item [[Kähler-Einstein manifold]] \item [[symplectic manifold]] \item [[Lefschetz decomposition]] \item [[Kähler polarization]], [[almost Kähler geometric quantization]], \item [[Fedosov deformation quantization]] \item [[Hodge filtration]], [[Frölicher spectral sequence]] \item [[Hodge manifold]] \item [[Sasakian manifold]] \end{itemize} [[!include special holonomy table]] \hypertarget{references}{}\subsection*{{References}}\label{references} K\"a{}hler manifolds were first introduced and studied by P. A. Shirokov (cf. \href{http://dx.doi.org/10.1070/RM1995v050n02ABEH002098}{a historical article}) and later independently by K\"a{}hler. Textbook accounts include \begin{itemize}% \item [[Claire Voisin]], section 3 of \emph{[[Hodge theory and Complex algebraic geometry]] I,II}, Cambridge Stud. in Adv. Math. \textbf{76, 77}, 2002/3 \end{itemize} Lecture notes include \begin{itemize}% \item Andrei Moroianu, \emph{Lectures on K\"a{}hler Geometry} () \item Philip Boalch, \emph{Noncompact complex symplectic and hyperkähler manifolds}, 2009 (\href{https://www.math.u-psud.fr/~boalch/cours09/hk.pdf}{pdf}) \end{itemize} Discussion in terms of [[integrability of G-structure|first-order integrable]] [[G-structure]] include \begin{itemize}% \item Misha Verbitsky, \emph{K\"a{}hler manifolds}, lecture notes 2009 (\href{http://verbit.ru/MATH/TALKS/Unicamp-kahler-1.pdf}{pdf}) \end{itemize} Discussion of [[spin structures]] in K\"a{}hler manifolds is for instance in \begin{itemize}% \item [[Thomas Friedrich]], \emph{Dirac operators in Riemannian geometry}, Graduate studies in mathematics 25, AMS (1997) \end{itemize} Discussion of [[Hodge theory]] on K\"a{}hler manifolds is in \begin{itemize}% \item O. Biquard, A. H\"o{}ring, \emph{K\"a{}hler geometry and Hodge theory}, 2008 (\href{http://math.unice.fr/~hoering/hodge/hodge.pdf}{pdf}) \end{itemize} [[!redirects Kähler manifolds]] [[!redirects Kahler manifold]] [[!redirects Kahler 2-form]] [[!redirects almost Kahler manifold]] [[!redirects Kähler 2-form]] [[!redirects almost Kähler manifold]] [[!redirects Kähler form]] [[!redirects Kähler forms]] [[!redirects Kähler geometry]] [[!redirects Kähler manifold]] [[!redirects Kähler structure]] [[!redirects Kähler structures]] [[!redirects Kaehler structure]] [[!redirects Kaehler structures]] [[!redirects almost Kähler manifold]] [[!redirects almost Kähler manifolds]] [[!redirects almost Kaehler manifold]] [[!redirects almost Kaehler manifolds]] [[!redirects almost Kähler structure]] [[!redirects almost Kähler structures]] [[!redirects almost Kaehler structure]] [[!redirects almost Kaehler structures]] [[!redirects Kähler manifold structure]] [[!redirects Kähler manifold structures]] [[!redirects Kaehler manifold structure]] [[!redirects Kaehler manifold structures]] \end{document}