\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{K3 surface} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{complex_geometry}{}\paragraph*{{Complex geometry}}\label{complex_geometry} [[!include complex geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{basic_properties}{Basic properties}\dotfill \pageref*{basic_properties} \linebreak \noindent\hyperlink{cohomology}{Cohomology}\dotfill \pageref*{cohomology} \linebreak \noindent\hyperlink{ModuliOfHigherLineBundles}{Moduli of higher line bundles and deformation theory}\dotfill \pageref*{ModuliOfHigherLineBundles} \linebreak \noindent\hyperlink{as_a_fiber_space_in_string_compactifications}{As a fiber space in string compactifications}\dotfill \pageref*{as_a_fiber_space_in_string_compactifications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{InStringTheory}{In string theory}\dotfill \pageref*{InStringTheory} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{K3 surface} is a [[Calabi-Yau variety]] of [[dimension]] $2$ (a Calabi-Yau [[algebraic surface]]/[[complex surface]]). This means that the [[canonical bundle]] $\omega_X=\wedge^2\Omega_X\simeq \mathcal{O}_X$ is trivial and $H^1(X, \mathcal{O}_X)=0$. The term ``K3'' is \begin{quote}% in honor of Kummer, K\"a{}hler, Kodaira, and the beautiful K2 mountain in Kashmir \end{quote} (\hyperlink{Weil79}{Weil 79, p. 546}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item A cyclic cover of $\mathbb{P}^2$ branched over a curve of degree $6$. \item A nonsingular degree $4$ hypersurface in $\mathbb{P}^3$, such as the [[Fermat hypersurface|Fermat quartic]] $\{[w,x,y,z] \in \mathbb{P}^3 | w^4 + x^4 + y^4 + z^4 = 0\}$ (in fact every K3 surface over $\mathbb{C}$ is [[diffeomorphism|diffeomorphic]] to this example). \item The [[flat orbifold]] quotient of the [[4-torus]] by the sign [[involution]] on all four canonical [[coordinates]] is the flat compact 4-dimensional orbifold known as the \emph{Kummer surface} $T^4 \sslash \mathbb{Z}_2$, a singular [[K3-surface]] (e.g. \href{Riemannian+orbifold#BettiolDerdzinskiPiccione18}{Bettiol-Derdzinski-Piccione 18, 5.5}) \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{basic_properties}{}\subsubsection*{{Basic properties}}\label{basic_properties} \begin{itemize}% \item All K3 surfaces are [[simply connected]]. \item Over the [[complex numbers]] they are all [[Kähler manifold|Kähler]], and even [[hyperkähler manifold|hyperkähler]]. \end{itemize} \hypertarget{cohomology}{}\subsubsection*{{Cohomology}}\label{cohomology} \begin{prop} \label{IntegralCohomology}\hypertarget{IntegralCohomology}{} \textbf{([[integral cohomology]] of [[K3-surface]])} The [[integral cohomology]] of a K3-surface $X$ is \begin{displaymath} H^n(X,\mathbb{Z}) \;\simeq\; \left\{ \itexarray{ \mathbb{Z} &\vert& n = 0 \\ 0 &\vert& n = 1 \\ \mathbb{Z}^{22} &\vert& n = 2 \\ 0 &\vert& n = 3 \\ \mathbb{Z} &\vert& n = 4 } \right. \end{displaymath} \end{prop} (e.g. \hyperlink{BarthPetersVandenVen84}{Barth-Peters-Van den Ven 84, VIII Prop. 3.2}) \begin{prop} \label{BettiNumbers}\hypertarget{BettiNumbers}{} \textbf{([[Betti numbers]] of a [[K3-surface]])} The [[Hodge diamond]] is completely determined (even in positive [[characteristic]]) and hence the [[Hodge-de Rham spectral sequence]] degenerates at $E_1$. This also implies that the [[Betti numbers]] are completely determined as $1, 0, 22, 0, 1$: \begin{displaymath} \itexarray{ && h^{0,0} \\ & h^{1,0} && h^{0,1} \\ h^{2,0} & & h^{1,1} & & h^{0,2} \\ & h^{2,1} & & h^{1,2} \\ && h^{2,2} } \;\;\;=\;\;\; \itexarray{ && 1 \\ & 0 && 0 \\ 1 & & 20 & & 1 \\ & 0 & & 0 \\ && 1 } \end{displaymath} \end{prop} (e.g. \hyperlink{BarthPetersVandenVen84}{Barth-Peters-Van den Ven 84, VIII Prop. 3.3}) \hypertarget{ModuliOfHigherLineBundles}{}\subsubsection*{{Moduli of higher line bundles and deformation theory}}\label{ModuliOfHigherLineBundles} In [[positive number|positive]] [[characteristic]] $p$: The [[Néron-Severi group]] of a K3 is a [[free abelian group]] The [[formal Brauer group]] is \begin{itemize}% \item either the formal [[additive group]], in which case it has [[height of a formal group|height]] $h = \infty$, by definition; \item or its [[height of a formal group|height]] is $1 \leq h \leq 10$, and every value may occur \end{itemize} (\hyperlink{Artin74}{Artin 74}), see also (\hyperlink{ArtinMazur77}{Artin-Mazur 77, p. 5 (of 46)}) [[!include moduli of higher lines -- table]] \hypertarget{as_a_fiber_space_in_string_compactifications}{}\subsubsection*{{As a fiber space in string compactifications}}\label{as_a_fiber_space_in_string_compactifications} See \emph{[[duality between heterotic and type II string theory]]} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[formal Brauer group]] \item [[K3-cohomology]] \item [[F-theory]], \item [[elliptic fibration]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Original sources include \begin{itemize}% \item [[Michael Artin]], \emph{Supersingular K3 Surfaces}, Annal. Sc. d, l'\'E{}c Norm. Sup. 4e s\'e{}ries, T. 7, fasc. 4, 1974, pp. 543-568 \item [[Andre Weil]], Final report on contract AF 18 (603)-57. In Scientific works. Collected papers. Vol. II (1951-1964). 1979. \end{itemize} Textbook accounts include \begin{itemize}% \item W. Barth, C. Peters, A. Van den Ven, chapter VII of \emph{Compact complex surfaces}, Springer 1984 \end{itemize} Lecture notes include \begin{itemize}% \item [[Daniel Huybrechts]], \emph{Lectures on K3-surfaces} (\href{http://www.math.uni-bonn.de/people/huybrech/K3Global.pdf}{pdf}) \item [[Claire Voisin]], \emph{} \item [[David Morrison]], \emph{\href{http://www.cgtp.duke.edu/ITP99/morrison/cortona.pdf}{The geometry of K3 surfaces}} Lecture notes (1988) \item Viacheslav Nikulin, \emph{Elliptic fibrations on K3 surfaces} (\href{http://arxiv.org/abs/1010.3904}{arXiv:1010.3904}) \end{itemize} Discussion of the [[deformation theory]] of K3-surfaces (of their [[Picard schemes]]) is (see also at \emph{[[Artin-Mazur formal group]]}) in \begin{itemize}% \item [[Michael Artin]], [[Barry Mazur]], \emph{Formal Groups Arising from Algebraic Varieties}, Annales scientifiques de l'\'E{}cole Normale Sup\'e{}rieure, S\'e{}r. 4, 10 no. 1 (1977), p. 87-131 \href{http://www.numdam.org/item?id=ASENS_1977_4_10_1_87_0}{numdam}, \href{http://www.ams.org/mathscinet-getitem?mr=56:15663}{MR56:15663} \end{itemize} \hypertarget{InStringTheory}{}\subsubsection*{{In string theory}}\label{InStringTheory} In [[string theory]], the [[KK-compactification]] of [[type IIA string theory]]/[[M-theory]]/[[F-theory]] on K3-[[fibers]] is supposed to exhibit te [[duality between M/F-theory and heterotic string theory]], originally due to \begin{itemize}% \item [[Chris Hull]], [[Paul Townsend]], section 6 of \emph{Unity of Superstring Dualities}, Nucl.Phys.B438:109-137,1995 (\href{http://arxiv.org/abs/hep-th/9410167}{arXiv:hep-th/9410167}) \item [[Edward Witten]], section 4 of \emph{[[String Theory Dynamics In Various Dimensions]]}, Nucl.Phys.B443:85-126,1995 (\href{http://arxiv.org/abs/hep-th/9503124}{arXiv:hep-th/9503124}) \end{itemize} Review includes \begin{itemize}% \item [[Paul Aspinwall]], \emph{K3 Surfaces and String Duality}, in [[Shing-Tung Yau]] (ed.): \emph{Differential geometry inspired by string theory} 1-95 (\href{https://arxiv.org/abs/hep-th/9611137}{arXiv:9611137}, \href{http://inspirehep.net/record/426102}{spire:426102}) \end{itemize} Further discussion includes \begin{itemize}% \item [[Paul Aspinwall]], [[David Morrison]], \emph{String Theory on K3 Surfaces}, in [[Brian Greene]], [[Shing-Tung Yau]] (eds.), \emph{Mirror Symmetry II}, International Press, Cambridge, 1997, pp. 703-716 (\href{https://arxiv.org/abs/hep-th/9404151}{arXiv:hep-th/9404151}) \item [[Paul Aspinwall]], \emph{Enhanced Gauge Symmetries and K3 Surfaces}, Phys.Lett. B357 (1995) 329-334 (\href{http://arxiv.org/abs/hep-th/9507012}{arXiv:hep-th/9507012}) \end{itemize} Specifically in relation to [[orbifold]] [[string theory]]: \begin{itemize}% \item [[Katrin Wendland]], \emph{Orbifold Constructions of K3: A Link between Conformal Field Theory and Geometry}, in \emph{[[Orbifolds in Mathematics and Physics]]} (\href{https://arxiv.org/abs/hep-th/0112006}{arXiv:hep-th/0112006}) \end{itemize} Specifically in relation to the putative [[K-theory]]-classification of [[D-brane charge]]: \begin{itemize}% \item Inaki Garcia-Etxebarria, [[Angel Uranga]], \emph{From F/M-theory to K-theory and back}, JHEP 0602:008,2006 (\href{https://arxiv.org/abs/hep-th/0510073}{arXiv:hep-th/0510073}) \end{itemize} Specifically in [[M-theory on G2-manifolds]]: \begin{itemize}% \item [[Michael Atiyah]], [[Edward Witten]] section 6.4 of \emph{$M$-Theory dynamics on a manifold of $G_2$-holonomy}, Adv. Theor. Math. Phys. 6 (2001) (\href{http://arxiv.org/abs/hep-th/0107177}{arXiv:hep-th/0107177}) \end{itemize} Specifically in relation to [[Moonshine]]: \begin{itemize}% \item [[Miranda Cheng]], Sarah M. Harrison, Roberto Volpato, Max Zimet, \emph{K3 String Theory, Lattices and Moonshine} (\href{https://arxiv.org/abs/1612.04404}{arXiv:1612.04404}) \end{itemize} Specifically in relation to [[little string theory]]: \begin{itemize}% \item [[Shamit Kachru]], Arnav Tripathy, Max Zimet, \emph{K3 metrics from little string theory} (\href{https://arxiv.org/abs/1810.10540}{arXiv:1810.10540}) \end{itemize} [[!redirects K3 surfaces]] [[!redirects K3]] [[!redirects K3-surface]] [[!redirects K3-surfaces]] [[!redirects Kummer surface]] [[!redirects Kummer surfaces]] \end{document}