\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{KR cohomology theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{as_the_grothendieck_group_of_complex_vector_bundles_with_real_structure}{As the Grothendieck group of complex vector bundles with real structure}\dotfill \pageref*{as_the_grothendieck_group_of_complex_vector_bundles_with_real_structure} \linebreak \noindent\hyperlink{as_a_genuine_spectrum}{As a genuine $\mathbb{Z}_2$-Spectrum}\dotfill \pageref*{as_a_genuine_spectrum} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{bigrading}{Bigrading}\dotfill \pageref*{bigrading} \linebreak \noindent\hyperlink{InducedFromModuliStackOfTori}{As induced from the derived moduli stack of tori}\dotfill \pageref*{InducedFromModuliStackOfTori} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} What is called \emph{KR-theory} (\hyperlink{Atiyah66}{Atiyah 66}) is variant of [[topological K-theory]] on [[spaces]] equipped with a $\mathbb{Z}_2$-[[action]] (by [[homeomorphism]], hence equipped with one [[involution|involutive]] homeomorphism -- a ``[[real space]]''). In terms of [[cocycle]] models, classes of KR-theory are represented by [[complex vector bundles]] over $X$ on which the involution on their base space lifts to an \emph{anti-linear} involution of the total space. Over manifolds with trivial involution these are precisely the [[complexification]] of [[real vector bundles]] and hence over such spaces $KR$-theory reduces to [[KO]]-[[cohomology theory|theory]]. Conversely, over two copies $X \cup X$ of $X$ equipped with the involution that interchanges the two, $KR$-theory reduces to [[KU]]-[[cohomology theory|theory]]. Finally over $X \times S^1$ with the involution the antipodal identification on the second ([[circle]]) factor , $KR$-theory reduces to the self-conjugate [[KSC-theory]] (\hyperlink{Anderson64}{Anderson 64}). So in general $KR$-theory interpolates between all these cases. For instance on $X \times S^1$ with the reflection-involution on the circle (the [[real space]] denoted $S^{1,1}$, the non-trivial $\mathbb{Z}_2$-[[representation sphere]]) it behaves like $KO$-theory at the two involution fixed points (the two [[O-planes]]) and like $KU$ in their complement (a model that makes this very explicit is given in \hyperlink{DMR13}{DMR 13, section 4}), schematically: \begin{displaymath} KR(S^{1,1}) = ( KO --- KU --- KO ) \end{displaymath} More abstractly, complex conjugation of complex vector bundles induces on the [[complex K-theory]] [[spectrum]] [[KU]] an involutive [[automorphism]]. $KR$ is the corresponding $\mathbb{Z}_2$-[[equivariant spectrum]], and $KR$-theory the corresponding $\mathbb{Z}_2$-[[equivariant cohomology]] theory. In particular, the [[homotopy fixed point]] of [[KU]] under this automorphism is [[KO]] \begin{displaymath} KO \simeq (KU)^{\mathbb{Z}/2} \end{displaymath} (e.g.\hyperlink{Karoubi01}{Karoubi 01}, \hyperlink{Dugger03}{Dugger 03, corollary 7.6}, \hyperlink{HillHopkinsRavenel}{Hill-Hopkins-Ravenel, section 7.3}) and this way where in complex K-theory one has [[KU]]-[[modules]] ([[∞-modules]]), so in KR-theory one has $KO$-modules. KR is an example of a [[real-oriented cohomology theory]], together with for instance [[MR-theory]] and [[BPR-theory]]. \begin{remark} \label{}\hypertarget{}{} An [[involution]] on a space by a [[homeomorphism]] (or [[diffeomorphism]]) as they appear in KR theory may be thought of as a ``non-linear [[real structure]]'', and therefore spaces equipped with such involutions are called ``[[real spaces]]''. Following this, $KR$-theory is usually pronounced ``real K-theory''. But \textbf{beware} that this terminology easily conflicts with or is confused with [[KO]]-theory. For disambiguation the latter might better be called ``orthogonal K-theory''. But on abstract grounds maybe $KR$-theory would best be just called $\mathbb{Z}_2$-equivariant complex K-theory. \end{remark} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{as_the_grothendieck_group_of_complex_vector_bundles_with_real_structure}{}\subsubsection*{{As the Grothendieck group of complex vector bundles with real structure}}\label{as_the_grothendieck_group_of_complex_vector_bundles_with_real_structure} \ldots{}(\hyperlink{Atiyah66}{Atiyah 66})\ldots{} \hypertarget{as_a_genuine_spectrum}{}\subsubsection*{{As a genuine $\mathbb{Z}_2$-Spectrum}}\label{as_a_genuine_spectrum} The following gives $KR$ as a [[genuine G-spectrum]] for $G = \mathbb{Z}_2$. Using that every orthogonal representation of $\mathbb{Z}_2$ is contained in an $\mathbb{C}^n$ with its [[complex conjugation]] action, one can restrict attention to these. Write \begin{displaymath} \mathbb{C}P^1 = S^{2,1} = S^{\mathbb{C}} \,. \end{displaymath} The reduced [[canonical line bundle]] over this (the [[Hopf fibration]]) is classified by a map \begin{displaymath} S^{2,1}= \mathbb{C}P^1 \to \mathbb{Z}\times BU \end{displaymath} to the [[classifying space]] for [[topological K-theory]]. The homotopy-associative multiplication on this space then yields the structure map of a $\mathbb{Z}_2$-spectrum \begin{displaymath} S^{2,1} \wedge (\mathbb{Z} \times BU)\to \mathbb{Z}\times BU \,. \end{displaymath} This is in fact an [[Omega spectrum]], by equivariant complex [[Bott periodicity]] (for instance in \hyperlink{Dugger03}{Dugger 03, p. 2-3}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{bigrading}{}\subsubsection*{{Bigrading}}\label{bigrading} As any genuine [[equivariant cohomology theory]] $KR$-theory is naturally graded over the [[representation ring]] $RO(\mathbb{Z}_2)$. Write $\mathbb{R}$ for the trivial 1-dimensional representation and $\mathbb{R}_-$ for that given by the sign involution. Then the general orthogonalrepresentation decomposes as a [[direct sum]] \begin{displaymath} V = \mathbb{R}^+\oplus \mathbb{R}_-^q \,. \end{displaymath} The corresponding [[representation sphere]] is \begin{displaymath} S^V = (some\; convention) \,. \end{displaymath} \hypertarget{InducedFromModuliStackOfTori}{}\subsubsection*{{As induced from the derived moduli stack of tori}}\label{InducedFromModuliStackOfTori} The relation between $KU$, $KO$ and $KR$ naturally arises in [[chromatic homotopy theory]] as follows. Inside the [[moduli stack of formal group laws]] sits the \emph{[[moduli stack of tori|moduli stack of one dimensional tori]]} $\mathcal{M}_{\mathbb{G}_m}$ (\hyperlink{LawsonNaumann12}{Lawson-Naumann 12, def. A.1, A.3}). This is equivalent to the [[quotient stack]] of the point by the [[group of order 2]] \begin{displaymath} \mathcal{M}_{\mathbb{G}_m}\simeq \mathbf{B}\mathbb{Z}_2 \end{displaymath} (\hyperlink{LawsonNaumann12}{Lawson-Naumann 12, prop. A.4}). Here the $\mathbb{Z}_2$-action is the inversion involution on [[abelian groups]]. Using the [[Goerss-Hopkins-Miller theorem]] this stack carries an [[E-∞ ring]]-valued [[structure sheaf]] $\mathcal{O}^{top}$ (\hyperlink{LawsonNaumann12}{Lawson-Naumann 12, theorem A.5}); and by the above equivalence this is a single [[E-∞ ring]] equipped with a $\mathbb{Z}_2$-[[∞-action]]. This is [[KU]] with its involution induced by [[complex conjugation]], hence essentially is $KR$. Accordingly, the [[global sections]] of $\mathcal{O}^{top}$ over $\mathcal{M}_{\mathbb{G}_m}$ are the $\mathbb{Z}_2$-[[homotopy fixed points]] of this action, hence is $KO$. This is further amplified in (\hyperlink{Mathew13}{Mathew 13, section 3}) and (\hyperlink{Mathew}{Mathew, section 2}). As suggested there and by the main (\hyperlink{LawsonNaumann12}{Lawson-Naumann 12, theorem 1.2}) this realizes (at least localized at $p = 2$) the inclusion $KO \to KU$ as the restriction of an analogous inclusion of [[tmf]] built as the global sections of the similarly derived [[moduli stack of elliptic curves]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[real-oriented cohomology theory]] \begin{itemize}% \item [[MR-theory]] \item [[BPR-theory]] \end{itemize} \item [[real algebraic K-theory]] \item [[orientifold]] \item [[KO-dimension]] \end{itemize} [[!include chromatic tower examples - table]] [[!include string theory and cohomology theory -- table]] [[!include moduli stack of curves -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} KR theory was introduced in \begin{itemize}% \item [[Michael Atiyah]], \emph{K-theory and reality}, The Quarterly Journal of Mathematics. Oxford. Second Series 17 (1) (1966),: 367--386, ISSN 0033-5606, MR 0206940 (\href{https://doi.org/10.1093/qmath/17.1.367}{doi:10.1093/qmath/17.1.367}, [[AtiyahKReal.pdf:file]]) \end{itemize} The version of $KSC$-theory was introduced in \begin{itemize}% \item D. W. Anderson, \emph{The real K-theory of classifying spaces} Proc. Nat. Acad. Sci. U. S. A., 51(4):634--636, 1964. \end{itemize} The dual concept of KR-homology was defined in \begin{itemize}% \item [[Gennady Kasparov]], \emph{The operator K-functor and extensions of $C^\ast$-algebras,} Izv. Akad. Nauk. SSSR Ser. Mat. 44, 571-636 (1980). \end{itemize} Computations over [[compact Lie groups]] are spelled out in \begin{itemize}% \item Chi-Kwong Fok, \emph{The real K-Theory of compact Lie groups}, 2014 (\href{http://pi.math.cornell.edu/~ckfok/Chi_Kwong_Fok_thesis.pdf}{pdf}) \end{itemize} Discussion in the general context of [[real oriented cohomology theory]] is in \begin{itemize}% \item Po Hu, [[Igor Kriz]], \emph{Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence}, Topology 40 (2001) 317-399 (\href{http://www.math.rochester.edu/people/faculty/doug/otherpapers/hukriz.pdf}{pdf}) \end{itemize} Further discussion includes \begin{itemize}% \item [[Johan Dupont]], \emph{Symplectic bundles and $KR$-theory} (1967) (\href{http://www.mscand.dk/article.php?id=1908}{pdf}) \end{itemize} Reviews include \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/KR-theory}{KR-theory}} \item Paolo Masulli, \emph{Equivariant homotopy: $KR$-theory}, Master thesis (2011) (\href{http://www.math.ku.dk/~jg/students/masulli.msthesis.2011.pdf}{pdf}) \end{itemize} Remarks on homotopy-theoretic KR in the context of [[algebraic K-theory]] are in \begin{itemize}% \item [[Vigleik Angeltveit]], [[Andrew Blumberg]], Teena Gerhardt, [[Michael Hill]], \emph{Algebraic K-theory and equivariant homotopy theory}, 2012 (\href{http://www.birs.ca/workshops/2012/12w5116/report12w5116.pdf}{pdf}) \end{itemize} Discussion of [[equivariant K-theory|equivariant]] and [[twisted K-theory|twisted]] versions of KR-theory \begin{itemize}% \item [[El-kaïoum M. Moutuou]], \emph{Twistings of KR for Real groupoids} (\href{http://arxiv.org/abs/1110.6836}{arXiv:1110.6836}) \item [[El-kaïoum M. Moutuou]], \emph{Graded Brauer groups of a groupoid with involution}, J. Funct. Anal. 266 (2014), no.5 (\href{https://arxiv.org/abs/1202.2057}{arXiv:1202.2057}) \item [[Daniel Freed]], \emph{Lectures on twisted K-theory and orientifolds}, lectures at ESI Vienna, 2012 ([[FreedESI2012.pdf:file]]) \item [[Daniel Freed]], [[Gregory Moore]], Section 7 of: \emph{Twisted equivariant matter}, Ann. Henri Poincaré (2013) 14: 1927 (\href{https://arxiv.org/abs/1208.5055}{arXiv:1208.5055}) \item [[Kiyonori Gomi]], \emph{Freed-Moore K-theory} (\href{https://arxiv.org/abs/1705.09134}{arXiv:1705.09134}, \href{http://inspirehep.net/record/1601772}{spire:1601772}) \end{itemize} This is with motivation from \emph{[[orientifolds]]}, see the references given there for more. A long list of computations of twisted $KR$-classes on tori with applications to [[T-duality]] on [[orientifolds]]/[[O-planes]] is in \begin{itemize}% \item [[Sergei Gukov]], \emph{K-Theory, Reality, and Orientifolds}, Commun.Math.Phys. 210 (2000) 621-639 (\href{http://arxiv.org/abs/hep-th/9901042}{arXiv:hep-th/9901042}) \item [[Charles Doran]], Stefan Mendez-Diez, [[Jonathan Rosenberg]], \emph{T-duality For Orientifolds and Twisted KR-theory} (\href{http://arxiv.org/abs/1306.1779}{arXiv:1306.1779}) (but see \hyperlink{HMSV19}{HMSV 19, p.5 footnote 1}) \item [[Charles Doran]], Stefan Mendez-Diez, [[Jonathan Rosenberg]], \emph{String theory on elliptic curve orientifolds and KR-theory} (\href{http://arxiv.org/abs/1402.4885}{arXiv:1402.4885}) \end{itemize} A general proposal for [[differential K-theory|differential]] [[equivariant K-theory|equivariant]] KR-theory of [[orientifolds]] and [[O-plane charge]] \begin{itemize}% \item [[Jacques Distler]], [[Dan Freed]], [[Greg Moore]], \emph{Orientifold Pr\'e{}cis} in: [[Hisham Sati]], [[Urs Schreiber]] (eds.) \emph{[[schreiber:Mathematical Foundations of Quantum Field and Perturbative String Theory]]} Proceedings of Symposia in Pure Mathematics, AMS (2011) (\href{http://arxiv.org/abs/0906.0795}{arXiv:0906.0795}, \href{http://www.ma.utexas.edu/users/dafr/bilbao.pdf}{slides}) \end{itemize} Discussion of $KO$ as the $\mathbb{Z}_2$-[[homotopy fixed points]] of $KU$ (or $KR$) is in \begin{itemize}% \item [[Max Karoubi]], \emph{A descent theorem in topological K-theory}, K-theory 24 (2001), no. 2, 109--114 (\href{http://arxiv.org/abs/math/0509396}{arXiv:math/0509396}) \item [[Daniel Dugger]], \emph{An Atiyah-Hirzebruch spectral sequence for $KR$-theory}, Ktheory 35 (2005), 213--256. (\href{http://arxiv.org/abs/math/0304099}{arXiv:0304099}) \item [[Michael Hill]], [[Michael Hopkins]], [[Douglas Ravenel]], section 7.3 of \emph{The Arf-Kervaire problem in algebraic topology: Sketch of the proof} ([[HHRKervaire.pdf:file]]) \end{itemize} Discussion of $KU$ with its $\mathbb{Z}_2$-action as the [[E-∞ ring]]-valued [[structure sheaf]] of the moduli stack of tori is due to \begin{itemize}% \item [[Tyler Lawson]], [[Niko Naumann]], appendix of \emph{Strictly commutative realizations of diagrams over the Steenrod algebra and topological modular forms at the prime 2} (\href{http://arxiv.org/abs/1203.1696}{arXiv:1203.1696}) \end{itemize} which is reviewed and amplified further in \begin{itemize}% \item [[Akhil Mathew]], section 3 of \emph{The homology of $tmf$} (\href{http://arxiv.org/abs/1305.6100}{arXiv:1305.6100}) \item Akhil Mathew, section 2 of \emph{The homotopy groups of $TMF$}, talk notes (\href{http://math.mit.edu/~sglasman/tmfhomotopy.pdf}{pdf}) \end{itemize} Discussion of [[twisted cohomology|twists]] of [[KR-theory]] by [[HZR-theory]] in degree 3 via [[bundle gerbes]] ([[Jandl gerbes]]) suitable for classifying [[D-brane charge]] on [[orientifolds]]: \begin{itemize}% \item [[Pedram Hekmati]], [[Michael Murray]], [[Richard Szabo]], [[Raymond Vozzo]], \emph{Real bundle gerbes, orientifolds and twisted KR-homology} (\href{http://arxiv.org/abs/1608.06466}{arXiv:1608.06466}) \item [[Pedram Hekmati]], [[Michael Murray]], [[Richard Szabo]], [[Raymond Vozzo]], \emph{Sign choices for orientifolds} (\href{https://arxiv.org/abs/1905.06041}{arXiv:1905.06041}) \end{itemize} [[!redirects KR-homology]] [[!redirects KR-theory]] [[!redirects KR]] [[!redirects real K-theory]] \end{document}